0S/390 ====°=

MVS JCL Reference

GC28-1757-09

0S/390 ====°=

MVS JCL Reference

GC28-1757-09

Note

Before using this information and the product it supports, be sure to read the general information under|Appendix A, “Notices’]

Tenth Edition, September 2000
This is a major revision of GC28-1757-08.

This edition applies to Version 2 Release 10 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com
World Wide Web: http://www.ibm.com/s390/0s390/webgs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this book
e Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book Xi
Who Should Use This Book Xi
Related Information Xi

Programs Xi

Hardware Xii
Summaryof Changes Xiii
Chapter 1. Job Control Statements 1-1
JCL Statements 1-1
JECL Statements 1-2
Chapter 2. Job Control Tasks 2-1
EnteringJobs 2-1
Processing Jobs 2-2
Requesting Resources 2-2
Task Charts 2-2
Chapter 3. Format of Statements 3-1
JCL Statement Fields 3-1
JES2 Control Statement Fields, 3-4
JES3 Control Statement Fields, . 3-4
Continuing Statements 3-5
Chapter 4. Syntax of Parameters 4-1
Notation Used to Show Syntax 4-1
Character Sets 4-3
Syntax Notes 4-5
Backward References 4-5
Chapter 5. Procedures and Symbols 5-1
Cataloged and In-Stream Procedures 5-1
Modifying Procedures 5-3
Nested Procedures 5-10
Using System Symbols and JCL Symbols 5-13
Chapter 6. Job Control Statements on the Output Listing 6-1
Chapter 7. Started Tasks 7-1
Determining Whether to Use a Started Task 7-1
Determining the Source JCL for the Started Task 7-1
Determining System Services for a Started Task 7-5
Codingthe JCL 7-8
Naming a Started Task (Source JCLisadJob) 7-12
Setting Up Operator Education for Your Started Task 7-13
Chapter 8. JCL Command Statement 8-1
Description 8-1
Chapter 9. COMMAND Statement 9-1

© Copyright IBM Corp. 1988, 2000 iii

Description 9-1

Chapter 10. Comment Statement 10-1
Description 10-1
Chapter 11. CNTL Statement 11-1
Description 11-1
Chapter 12. DD Statement 12-1
Description 12-1
*Parameter 12-16
ACCODE Parameter 12-19
AMP Parameter 12-21
AVGREC Parameter, 12-29
BLKSIZE Parameter 12-30
BLKSZLIM Parameter 12-32
BURST Parameter 12-33
CCSID Parameter 12-34
CHARS Parameter 12-37
CHKPT Parameter 12-39
CNTL Parameter 12-41
COPIES Parameter 12-42
DATA Parameter o 12-45
DATACLAS Parameter 12-48
DCB Parameter 12-51
DDNAME Parameter 12-70
DEST Parameter 12-76
DISP Parameter o 12-80
DLM Parameter o 12-92
DSID Parameter 12-94
DSNAME Parameter 12-95
DSNTYPE Parameter 12-104
DUMMY Parametero 12-107
DYNAM Parameter 12-110
EXPDT Parameter 12-111
FCB Parameter 12-113
FILEDATA Parameter 12-116
FLASH Parameter 12-117
FREE Parameter 12-119
HOLD Parametero 12-122
KEYLEN Parameter 12-125
KEYOFF Parameter 12-126
LABEL Parameter 12-127
LGSTREAM Parameter 12-134
LIKE Parameter 12-135
LRECL Parameter 12-137
MGMTCLAS Parameter 12-139
MODIFY Parametero 12-141
OUTLIM Parameter 12-142
OUTPUT Parameter 12-144
PATH Parameter 12-148
PATHDISP Parameter 12-151
PATHMODE Parameter 12-153
PATHOPTS Parameter 12-156

iV 0S/390 V2R10.0 MVS JCL Reference

PROTECT Parameter 12-160

QNAME Parameter 12-163
RECFM Parameter 12-164
RECORG Parameter 12-167
REFDD Parameter 12-169
RETPD Parameter 12-171
RLS Parameter 12-173
SECMODEL Parameter 12-174
SEGMENT Parameter 12-176
SPACE Parameter 12-177
SPIN Parameter 12-186
STORCLAS Parameter e 12-188
SUBSYS Parameter 12-190
SYSOUT Parameter 12-192
TERM Parameter 12-198
UCS Parameter o 12-199
UNIT Parameter 12-202
VOLUME Parameter 12-209
Chapter 13. Special DD Statements 13-1
Description 13-1
JOBCAT DD Statement, 13-1
JOBLIB DD Statement 13-2
STEPCAT DD Statement 13-6
STEPLIB DD Statement 13-7
SYSABEND, SYSMDUMP, and SYSUDUMP DD Statements 13-11
SYSCHK DD Statement 13-14
SYSCKEOQV DD Statement 13-17
SYSIN DD Statement 13-18
Chapter 14. Delimiter Statement 14-1
Description 14-1
Chapter 15. ENDCNTL Statement 15-1
Description 15-1
Chapter 16. EXEC Statement 16-1
Description 16-1
ACCT Parameter 16-5
ADDRSPC Parameter 16-7
CCSID Parameter 16-8
COND Parameter, 16-9
DYNAMNBR Parameter 16-17
PARM Parameter 16-18
PERFORM Parameter 16-20
PGM Parameter 16-22
PROC and Procedure Name Parameters 16-23
RD Parameter 16-24
REGION Parametero 16-28
TIME Parameter 16-30
Chapter 17. IF/THEN/ELSE/ENDIF Statement Construct 17-1
Description 17-1

Contents V

Vi

Chapter 18. INCLUDE Statement 18-1

Description 18-1
Chapter 19. JCLLIB Statement 19-1
Description 19-1
Chapter 20. JOB Statement 20-1
Description 20-1
Accounting Information Parameter L. 20-6
ADDRSPC Parameter, 20-9
BYTES Parameter 20-10
CARDS Parameter 20-12
CCSID Parameter 20-14
CLASS Parameter 20-16
COND Parameter 20-17
GROUP Parameter 20-19
LINES Parameter 20-20
MSGCLASS Parameter 20-22
MSGLEVEL Parameter 20-24
NOTIFY Parameter 20-26
PAGES Parameter 20-28
PASSWORD Parameter 20-30
PERFORM Parameter 20-31
Programmer’s Name Parameter, 20-33
PRTY Parameter 20-35
RD Parameter 20-36
REGION Parameter 20-39
RESTART Parameter 20-41
SECLABEL Parameter 20-44
SCHENV Parameter 20-45
TIME Parameter 20-46
TYPRUN Parameter 20-49
USER Parameter 20-51
Chapter 21. Null Statement 21-1
Description 21-1
Chapter 22. OUTPUT JCL Statement 22-1
Description 22-1
ADDRESS Parameter 22-11
BUILDING Parameter 22-13
BURST Parameter 22-15
CHARS Parameter 22-16
CKPTLINE Parameter 22-18
CKPTPAGE Parameter 22-18
CKPTSEC Parameter 22-19
CLASS Parameter 22-20
COLORMAP Parameter e 22-23
COMPACT Parameter 22-23
COMSETUP Parameter 22-24
CONTROL Parameter 22-24
COPIES Parameter 22-25
DATACK Parameter 22-28
DEFAULT Parameter 22-29

0S/390 V2R10.0 MVS JCL Reference

DEPT Parametero 22-31

DEST Parameter 22-33
DPAGELBL Parameter 22-36
DUPLEX Parametero 22-38
FCB Parameter 22-38
FLASH Parameter 22-40
FORMDEF Parameter 22-42
FORMLEN Parameter 22-43
FORMS Parameter 22-44
FSSDATA Parameter 22-45
GROUPID Parameter 22-48
INDEX Parameter e 22-50
INTRAY Parameter 22-50
JESDS Parameter 22-51
LINDEX Parameter o 22-53
LINECT Parameter 22-54
MODIFY Parameter 22-55
NAME Parameter 22-56
NOTIFY Parameter 22-58
OFFSETXB Parameter e 22-59
OFFSETXF Parameter 22-60
OFFSETYB Parameter 22-60
OFFSETYF Parameter 22-60
OUTBIN Parameter e 22-60
OUTDISP Parameter 22-61
OVERLAYB Parameter, 22-64
OVERLAYF Parameter 22-64
OVFL Parameter 22-64
PAGEDEF Parameter 22-65
PIMSG Parameter 22-67
RETAINS | RETAINF Parameter 22-74
RETRYL | RETRYT Parameter 22-76
ROOM Parameter 22-77
SYSAREA Parameter 22-78
THRESHLD Parameter 22-80
TITLE Parameter o 22-81
TRC Parameter 22-82
UCS Parameter 22-83
USERDATA Parameter 22-85
USERLIB Parameter 22-89
WRITER Parameter 22-91
Chapter 23. PEND Statement 23-1
Description 23-1
Chapter 24. PROC Statement 24-1
Description 24-1
Chapter 25. SET Statement 25-1
Description 25-1
Chapter 26. XMIT JCL Statement 26-1
Description 26-2
DEST Parametero 26-4

Contents Vi

DLM Parametero 26-5

SUBCHARS Parameter, 26-6
Chapter 27. JES2 Control Statements 27-1
Description 27-1
JES2 Command Statement 27-2
/JOBPARM Statement 27-3
MESSAGE Statement 27-9
NETACCT Statement 27-10
ANOTIFY Statement 27-11
FOUTPUT Statement 27-12
[*PRIORITY Statement 27-21
[FROUTE Statement 27-22
[*SETUP Statement 27-25
[*SIGNOFF Statement 27-26
/*SIGNON Statement 27-27
[XEQ Statement 27-29
XMIT Statement 27-30
Chapter 28. JES3 Control Statements 28-1
Description 28-1
JES3 Command Statement 28-2
/*DATASET Statement 28-4
/FENDDATASET Statement 28-6
/FENDPROCESS Statement 28-7
/FFORMAT PR Statement 28-7
/FFORMAT PU Statement 28-17
/MAIN Statement 28-22
/FNET Statement 28-38
/FNETACCT Statement 28-42
/FOPERATOR Statement 28-44
[F*PAUSE Statement 28-44
/FPROCESS Statement 28-45
/FROUTE XEQ Statement 28-48
[*SIGNOFF Statement 28-50
/*SIGNON Statement 28-51
Appendix A. Notices A-1
Trademarks A-2
Index X-1

viil 0S/390 V2R10.0 MVS JCL Reference

Figures

1-1.
1-2.
2-1.
2-2.
2-3.

3-1.
4-1.

4-3.
4-4.,
5-1.
6-1.
12-1.
12-2.

16-1.
16-2.
17-1.
20-1.

22-1.
22-2.

28-1.

© Copyright IBM Corp. 1988, 2000

MVS Job Control Language (JCL) Statements 1-1
Job Entry Control Language (JECL) Statements 1-2
Tasks for EnteringJobso 2-3
Tasks for ProcessingJobs L 2-5
Tasks for Requesting Data Set Resources 2-6
Tasks for Requesting Sysout Data Set Resources 2-8
JCL Statement Fields 3-2
Notation Used to Show Syntax 4-1
Character Sets 4-3
Special Characters Used in Syntax 4-3
Special Characters that Do Not Require Enclosing Apostrophes 4-4
Summary of Rules 2 - 6 for Symbols in Nested Procedures 5-29
Identification of StatementsinJoblLog 6-2
Summary of Disposition Processing 12-89
Special Character Sets for the 1403, 3203 Model 5, and 3211
Printers 12-201
Execution or Bypassing of Current Step Based on COND
Parameter 16-15
Effect of EVEN and ONLY Subparameters on Step Execution .. 16-15
Operators on IF/THEN/ELSE/ENDIF Statement Construct 17-3
Continuation or Termination of the Job Based on the COND
Parameter 20-19
Job- and Step-Level OUTPUT JCL Statements inthe JCL 22-10
Special Character Sets for the 1403, 3203 Model 5, and 3211
Printers 22-84
DSPs for JES3 //*PROCESS Statements 28-46
iX

X 0S/390 V2R10.0 MVS JCL Reference

About This Book

This book describes the job control tasks needed to enter jobs into the OS/390
operating system, control the system's processing of jobs, and request the
resources needed to run jobs. The book also contains a chapter that describes
"started tasks" and how to set them up. To perform job control or started tasks,
programmers code "job control statements." This book describes how to code these
statements, which include:

e Job control language (JCL) statements

e Job entry control language (JECL) statements, which encompass:
Job entry subsystem 2 (JES2) control statements
Job entry subsystem 3 (JES3) control statements

This book is designed as a reference book, to be used while coding the statements.
It contains some introductory material. Full explanations of the job control tasks are
presented in a companion book, [0S/390 MVS JCL User's Guidg, GC28-1758.

Who Should Use This Book

This book is needed by system and application programmers who enter programs
into the operating system. Those using this book should understand the concepts of
job management and data management.

Related Information

To have complete JCL information, you need the following book:
[©0S/390 MVS JCL User's Guidd, GC28-1758

Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of 0S/390, see |0S/390 Information Roadmap, GC28-1727.
The following tables list the short titles, titles, and order numbers for books related
to non-OS/390 products that this book references.

Programs
Short Title Used in This Book Title Order Number
ACF/TCAM Installation Reference Advanced Communications Function for TCAM, SC30-3133
Version 2 Installation Reference
PSF/MVS System Programming Guide PSF/MVS System Programming Guide SH35-0091
PSF/MVS Application Programming Guide PSF/MVS Application Programming Guide S544-3084

© Copyright IBM Corp. 1988, 2000 xi

Hardware

Short Title Used in This Book

Title

Order Number

2821 Component Description

IBM 2821 Control Unit Component Description GA24-3312
3540 Programmer's Reference OS/VS2 IBM 3540 Programmer's Reference GC24-5111
3800 Programmer's Guide IBM 3800 Printing Subsystem Programmer's Guide GC26-3846
Forms Design Reference Guide for the 3800 Forms Design Reference Guide for the IBM 3800 GA26-1633

Printing Subsystem

Xii

0S/390 V2R10.0 MVS JCL Reference

Summary of Changes

Summary of Changes
for GC28-1757-09
0S/390 Version 2 Release 10

The book contains information previously presented in GC28-1757-08, which
supports OS/390 Version 2 Release 9.

New Information

The BLKSZLIM parameter is added to the DD statement.
Changed Information

The BLKSIZE parameter on the DD statement is updated.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-08
0S/390 Version 2 Release 9

The book contains information previously presented in GC28-1757-07, which
supports OS/390 Version 2 Release 8.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-06
0S/390 Version 2 Release 7

The book contains information previously presented in GC28-1757-05 which
supports OS/390 Version 2 Release 6.

New Information

The CCSID (coded character set identifier) parameter is added to the JOB, EXEC,
and DD statements.

Changed Information

The description of the ACCODE (accessibility code) parameter of the DD statement
is updated.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 1988, 2000 Xiii

Summary of Changes
for GC28-1757-05
0S/390 Version 2 Release 6

The book contains information previously presented in GC28-1757-04, which
supports OS/390 Version 2 Release 5.

Changed Information

e The SCHENV parameter on the JOB statement, which allows you to specify the
name of a WLM scheduling environment, can now be used for JES3 jobs.

e As part of the name change of OpenEdition to OS/390 UNIX System Services,
occurrences of OS/390 OpenEdition have been changed to OS/390 UNIX
System Services or its abbreviated name, OS/390 UNIX. OpenEdition may
continue to appear in messages, panel text, and other code with OS/390 UNIX
System Services.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-04
0S/390 Version 2 Release 5

The book contains information previously presented in GC28-1757-03, which
supports OS/390 Version 2 Release 4.

New Information

* New parameters have been added for the Print Services Facility.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-03
0S/390 Version 2 Release 4

The book contains information previously presented in GC28-1757-02, which
supports OS/390 Version 1 Release 3.

New Information

¢ A new JOB statement parameter, SCHENYV, is described. Currently valid only
for JES2 jobs, it allows you to specify the name of a WLM scheduling
environment.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes

for GC28-1757-02
0S/390 Version 1 Release 3

XiV 0S/390 V2R10.0 MVS JCL Reference

The book contains information previously presented in GC28-1757-01, which
supports OS/390 Version 1 Release 2.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-01
0S/390 Release 2

This book contains information previously presented in OS/390 MVS JCL
Reference GC28-1757-00, which supports OS/390 Release 1.

The following summarizes the changes to that information.

Changed Information

¢ The date field on the DEADLINE= parameter of the JES3 //*MAIN statement is
expanded to allow a 4-digit-year (yyyy), which is required to support dates
beyond 31 December 1999.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1757-00
0S/390 Release 1

This book contains information previously presented in MVS/ESA JCL Reference
GC28-1479, which supports MVS/ESA System Product Version 5.

This book includes terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes XV

XVvi 0S/390 V2R10.0 MVS JCL Reference

Statements

Chapter 1. Job Control Statements

This chapter lists, in Figure 1-1, all but one of the statements in the MVS Job
Control Language (JCL), and in [Figure 1-2 on page 1-2| all of the Job Entry
Control Language (JECL) statements for the JES2 and JES3 subsystems, together
with the purpose of each statement. Later chapters describe each statement in
detail. (The PRINTDEV JCL statement, for use by the person starting the Print
Services Facility, is documented in the manual |PSF for 0S/390: Customization.)

JCL Statements

Figure 1-1 (Page 1 of 2). MVS Job Control Language (JCL) Statements

Statement Name Purpose

// command JCL command Enters an MVS system operator command
through the input stream. The command
statement is used primarily by the operator.
Use the COMMAND statement instead of
the JCL command statement.

// COMMAND command Specifies an MVS or JES command that the
system issues when the JCL is converted.
Use the COMMAND statement instead of
the JCL command statement.

/I* comment comment Contains comments. The comment
statement is used primarily to document a
program and its resource requirements.

/I CNTL control Marks the beginning of one or more
program control statements.

// DD data definition Identifies and describes a data set.

/ delimiter Indicates the end of data placed in the input
stream.

Note: A user can designate any two
characters to be the delimiter.

// ENDCNTL end control Marks the end of one or more program
control statements.

/I EXEC execute Marks the beginning of a job step; assigns a
name to the step; identifies the program or
the cataloged or in-stream procedure to be
executed in this step.

/I [F/THEN/ELSE/ENDIF IF/THEN/ELSE/ENDIF | Specifies conditional execution of job steps
statement construct within a job.

// INCLUDE include Identifies a member of a partitioned data set
(PDS) or partitioned data set extended
(PDSE) that contains JCL statements to
include in the job stream.

// JCLLIB JCL library Identifies the libraries that the system will
search for:

¢ INCLUDE groups
¢ Procedures named in EXEC statements.

// JOB job Marks the beginning of a job; assigns a
name to the job.

/ null Marks the end of a job.

© Copyright IBM Corp. 1988, 2000 1-1

Statements

Figure 1-1 (Page 2 of 2). MVS Job Control Language (JCL) Statements

Statement Name Purpose

// OUTPUT output JCL Specifies the processing options that the job
entry subsystem is to use for printing a
sysout data set.

// PEND procedure end Marks the end of an in-stream or cataloged
procedure.
// PROC procedure Marks the beginning of an in-stream

procedure and may mark the beginning of a
cataloged procedure; assigns default values
to parameters defined in the procedure.

/I SET set Defines and assigns initial values to
symbolic parameters used when processing
JCL statements. Changes or nullifies the
values assigned to symbolic parameters.

/I XMIT transmit Transmits input stream records from one
node to another.

Note: The XMIT JCL statement is supported
only on JES3 systems.

JECL Statements

Figure 1-2 (Page 1 of 2). Job Entry Control Language (JECL) Statements

Statement | Purpose

Job Entry Subsystem 2 (JES2) Control Statements

/*$command Enters JES2 operator commands through the input stream.
/*JOBPARM Specifies certain job-related parameters at input time.
/*MESSAGE Sends messages to the operator via the operator console.
/*"NETACCT Specifies an account number for a network job.

/*NOTIFY Specifies the destination of notification messages.

/*OUTPUT Specifies processing options for sysout data set(s).

/*PRIORITY Assigns a job queue selection priority.

/*ROUTE Specifies the output destination or the execution node for the job.
/*SETUP Requests mounting of volumes needed for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

/*XEQ Specifies the execution node for a job.

[*XMIT Indicates a job or data stream to be transmitted to another JES2 node

or eligible non-JES2 node.

Job Entry Subsystem 3 (JES3) Control Statements

//**command Enters JES3 operator commands, except *DUMP and *RETURN,
through the input stream.

/*"DATASET Begins an input data set in the input stream.

/I"ENDDATASET Ends the input data set that began with a /*dataset statement.
/"ENDPROCESS Ends a series of //*"PROCESS statements.

/"FORMAT Specifies the processing options for a sysout or JES3-managed print

or punch data set.

/I*MAIN Defines selected processing parameters for a job.

1-2 0S/390 V2R10.0 MVS JCL Reference

Statements

Figure 1-2 (Page 2 of 2). Job Entry Control Language (JECL) Statements

Statement Purpose

/I"NET Identifies relationships between predecessor and successor jobs in a
dependent job control net.

/FNETACCT Specifies an account number for a network job.

//*OPERATOR Sends messages to the operator.

/I"PAUSE Halts the input reader.

/*"PROCESS Identifies a nonstandard job.

/I"ROUTE Specifies the execution node for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing session.

Chapter 1. Job Control Statements

1-3

Statements

1-4 0S/390 V2R10.0 MVS JCL Reference

Tasks

Chapter 2. Job Control Tasks

For your program to execute on the computer and perform the work you designed it
to do, your program must be processed by your operating system.

Your operating system consists of an MVS/SP base control program (BCP) with a
job entry subsystem (JES2 or JES3) and DFSMS/MVS DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which consist of:

JCL statements
JES2 control statements
JES3 control statements

Entering Jobs

Job Steps

You enter a program into the operating system as a job step. A job step consists
of the job control statements that request and control execution of a program and
request the resources needed to run the program. A job step is identified by an
EXEC statement. The job step can also contain data needed by the program. The
operating system distinguishes job control statements from data by the contents of
the records.

Jobs
A job is a collection of related job steps. A job is identified by a JOB statement.
Input Streams

Jobs placed in a series and entered through one input device form an input
stream. The operating system reads an input stream into the computer from an
input/output (1/0) device or an internal reader. The input device can be a card
reader, a magnetic tape device, a terminal, or a direct access device. An internal
reader is a buffer that is read from a program into the system as though it were an
input stream.

Cataloged and In-Stream Procedures

You often use the same set of job control statements repeatedly with little or no
change, for example, to compile, assemble, link-edit, and execute a program. To
save time and prevent errors, you can prepare sets of job control statements and
place, or catalog, them in a partitioned data set (PDS) or partitioned data set
extended (PDSE) known as a procedure library. The data set attributes of a
procedure library should match SYS1.PROCLIB (record length of 80 and record
format of FB). Such a set of job control statements in the system procedure library,
SYS1.PROCLIB (or an installation-defined procedure library), is called a cataloged
procedure.

© Copyright IBM Corp. 1988, 2000 2-1

Tasks

To test a procedure before placing it in the catalog, place it in an input stream and
execute it; a procedure in an input stream is called an in-stream procedure. The
maximum number of in-stream procedures you can code in any job is 15.

Steps in a Job

A job can be simple or complex; it can consist of one step or of many steps that
call many in-stream and cataloged procedures. A job can consist of up to 255 job
steps, including all steps in any procedures that the job calls. Specification of a
greater number of steps produces a JCL error.

Processing Jobs

The operating system performs many job control tasks automatically. You can
influence the way your job is processed by the JCL and JES2 or JES3 parameters
you code. For example, the job entry subsystem selects jobs for execution, but you
can speed up or delay selection of your job by the parameters you code.

Requesting Resources

Data Set Resources

To execute a program, you must request the data sets needed to supply data to
the program and to receive output records from the program.

Sysout Data Set Resources

A sysout data set is a system-handled output data set. This data set is placed
temporarily on direct access storage. Later, at the convenience of the system, the
system prints it, punches it, or sends it to a specified location. Because sysout
data sets are processed by the system, the programmer can specify many
parameters to control that processing.

Task Charts

The following charts list the job control tasks, which are described in the |0S/390
[MVS JCL User's Guidd, in four groups:

 Entering jobs in|Figure 2-1 on page 2-3|

* Processing jobs in

* Requesting data set resources in |Figure 2-3 on page 2-6
 Requesting sysout data set resources in [Figure 2-4 on page 2-8 |

For each task, the charts list the parameters and statements that can be used to
perform it. In many cases, the same task can be performed using different
parameters on different statements. Where a parameter can appear on both a JOB
and EXEC statement, it applies to the entire job when coded on the JOB statement
but only to a step when coded on an EXEC statement.

The system is designed to enable users to perform many types of job control in
many ways. To allow this flexibility, only two job entry tasks are required:

* Identification: The job must be identified in the jobname field of a JOB
statement.

2-2 0S/390 V2R10.0 MVS JCL Reference

Tasks

» Execution: The program or procedure to be executed must be named in a
PGM or PROC parameter on an EXEC statement.

Therefore, the following statements are the minimum needed to perform a job
control task:

//jobname JOB

/1

EXEC

{PGM=program-name }

{PROC=procedure-name}
{procedure-name}

Figure 2-1 (Page 1 of 3). Tasks for Entering Jobs

TASKS FOR STATEMENTS AND PARAMETERS
EgEERING JCL Statements JES2 JES3
JOB | EXEC Other JOL Statements Statements
Identification
of job jobname field null statement (JES3
only)
of step stepname field
of procedure PROC PEND
of INCLUDE INCLUDE
group
of account accounting ACCT /*NETACCT /"NETACCT
information or
pano in JOB
JES2 accounting
information
of programmer programmer's ROOM on PNAME, BLDG,
name and room /*JOBPARM DEPT, ROOM,
in JOB JES2 and USERID
accounting on //*NETACCT
information
USER
Execution
of program PGM
of procedure PROC
when restarting RESTART RD SYSCHK DD RESTART on FAILURE and
and with RD /*JOBPARM JOURNAL on
checkpointing /I"MAIN
deadline or DEADLINE on
periodic /I*MAIN
when dependent /*NET
on other jobs
at remote node XMIT JCL (JES3 /*ROUTE XEQ /"ROUTE XEQ
only) /*XEQ /*XMIT
Job Input Control
by holding job TYPRUN HOLD,
entrance CLASS UPDATE, or
CLASS on
/"MAIN //*NET
by holding local /I"PAUSE
input reader
by copying input TYPRUN
stream (JES2 CLASS

only)

Chapter 2. Job Control Tasks

2-3

Tasks

Figure 2-1 (Page 2 of 3). Tasks for Entering Jobs

TASKS FOR STATEMENTS AND PARAMETERS
ESEERING JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
from remote /*SIGNON /*SIGNON
work station /*SIGNOFF /*SIGNOFF
Communication
from JCL to COMMAND /*$command //**command
system Command
from JCL to *MESSAGE /I*OPERATOR
operator
from JCL to Comment field Comment field /[*comment, also Comment field
programmer unless no comment field on all on
parameter field statements but null /FENDPROCESS
and //*PAUSE
from JCL to PARM
program
from system to WARNING on FETCH on
operator BYTES, /I*MAIN
CARDS, LINES, WARNING on
and PAGES BYTES,
CARDS,
LINES, and
PAGES on
/I*MAIN
from system to
userid
-of job NOTIFY /*NOTIFY ACMAIN on
completion /I"MAIN with
JOB NOTIFY
-of print NOTIFY on OUTPUT
completion JCL statement
from TSO/E USER on
userid to system /I*MAIN
from functional PIMSG on OUTPUT
subsystem to JCL
programmer
through job log MSGCLASS JESDS on OUTPUT NOLOG on
MSGLEVEL log JCL /*JOBPARM
in JOB JES2
accounting
information
Protection
through RACF GROUP
PASSWORD
SECLABEL
USER
Resource Control
of program JOBLIB DD,
library STEPLIB DD, DD
defining PDS or
PDSE member

2-4 0S/390 V2R10.0 MVS JCL Reference

Tasks

Figure 2-1 (Page 3 of 3). Tasks for Entering Jobs

TASKS FOR STATEMENTS AND PARAMETERS
‘Ing;gRING JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
of procedure JCLLIB PROCLIB on PROC and
library /*JOBPARM UPDATE on
/*MAIN
of INCLUDE JCLLIB PROCLIB on PROC and
group /*JOBPARM UPDATE on
/*MAIN
of address REGION REGION LREGION on
space ADDRSPC ADDRSPC /*MAIN
of processor SYSAFF on SYSTEM on
/*JOBPARM /*MAIN
of spool partition SPART and
TRKGRPS on
/*MAIN
Figure 2-2 (Page 1 of 2). Tasks for Processing Jobs
TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
:'ggg ESSING JCL Statements JES2 JES3
JOB | EXEC Other JOL Statements Statements
Processing Control
by conditional COND COND IF/THEN/ELSE/ENDIF | CANCEL on CANCEL on
execution statement construct BYTES, BYTES,
CANCEL on CARDS, CARDS,
BYTES, CARDS, LINES, and LINES, and
LINES, and PAGES on PAGES on
PAGES /*JOBPARM /*MAIN
by timing TIME or time in TIME TIME on
execution JOB JES2 /*JOBPARM
accounting
information
for testing: TYPRUN PGM=IEFBR14 /*PROCESS
1. by altering CLASS /"ENDPROCESS
usual PGM=JCLTEST SYSMDUMP DD
: SYSUDUMP DD
processing PGM=JSTTEST SYSABEND DD
(JES3 only)
2 Z?t;ug:g?g DUMP on To format dump on DUMP in
BYTES, 3800 Printing BYTES,
CARDS, LINES, Subsystem, CARDS,
and PAGES FCB=STD3 and LINES, and
CHARS=DUMP PAGES on
on dump DD /*MAIN
Performance Control
by job class CLASS CLASS on
assignment /FMAIN
by selection PRTY /*PRIORITY
priority
by performance PERFORM PERFORM
group
assignment

Chapter 2. Job Control Tasks 2-5

Tasks

Figure 2-2 (Page 2 of 2). Tasks for Processing Jobs

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
:’ggg ESSING JCL Statements JES2 JES3
JOB EXEC Other JCL Statements Statements
by IORATE on
1/0-to-processing /FMAIN
ratio
Figure 2-3 (Page 1 of 3). Tasks for Requesting Data Set Resources
TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [;¢) statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD | OUTPUT JCL Other JCL
Identification
of data set DSNAME UPDATE on
/*MAIN
of in-stream * or DATA /[*DATASET
data set SYSIN DD /"ENDDATASET
DLM /* or xx delimiter
of data set on DSID
3540 Diskette
Input/Output
Unit
through catalog JOBCAT DD
STEPCAT DD
through label label-type on
LABEL
by location on data-set-
tape sequence-
number on
LABEL
as TCAM QNAME
message data
set
from or to TERM
terminal
Description
of status DISP
of data attributes DCB
AMP
DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG
- by modeling
LIKE
REFDD
of data for CCSID
ISO/ANSI
Version 4 tapes

2-6 0S/390 V2R10.0 MVS JCL Reference

Tasks

Figure 2-3 (Page 2 of 3). Tasks for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
gi?:ZSETrING JCL Statements JES2 JES3
RESOURCES DD OUTPUT JCL Other JCL Statements Statements
of migration and MGMTCLAS
backup
Protection
through RACF PROTECT
SECMODEL
for ACCODE
ISO/ANSI/FIPS
Version 3 tapes
and ISO/ANSI
Version 4 tapes
by passwords PASSWORD
and
NOPWREAD on
LABEL
of access to IN and OUT on
BSAM and LABEL
BDAM data sets
Allocation
of device UNIT CLASS on JOB SETUP and
STORCLAS (JES3 only) CLASS on
/I*MAIN
of tape or direct VOLUME EXPDTCHK
access volume STORCLAS and RINGCHK
on //*MAIN
of direct access SPACE
space AVGREC
DATACLAS
of virtual I1/0 UNIT
DSNAME=
temporary
data set
with deferred DEFER on UNIT
volume
mounting
with volume /*SETUP

pre-mounting

dynamic

DYNAMNBR on
EXEC

Processing Control

by suppressing DUMMY
processing NULLFILE on
DSNAME
by postponing DDNAME
specification
with CHKPT RESTART on JOB
checkpointing SYSCKEOV DD RD on EXEC
SYSCHK DD
by subsystem SUBSYS CNTL CNTL ENDCNTL
by TCAM job or QNAME

task

End Processing

Chapter 2. Job Control Tasks 2-7

Tasks

Figure 2-3 (Page 3 of 3). Tasks for Requesting Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
gi?:ZSETrING JCL Statements JES2 JES3
RESOURCES DD OUTPUT JCL Other JCL Statements Statements
unallocation FREE
disposition of DISP QOUTDISP on
data set /*OUTPUT

RETPD

EXPDT
release of RLSE on
unused direct SPACE
access space
disposition of RETAIN and
volume PRIVATE on

VOLUME
Figure 2-4 (Page 1 of 3). Tasks for Requesting Sysout Data Set Resources
TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
REQUESTING [;¢) Statements JES2 JES3
DATA SET Statements Statements
RESOURCES DD | OUTPUT JCL Other JCL
Identification
as a sysout data SYSOUT
set
name (last DSNAME
qualifier)
of output class class on CLASS MSGCLASS on JOB

SYSOUT with SYSOUT=" or

CLASS=* and
SYSOUT=(,)

of data set on DSID
3540 Diskette
Input/Output
Unit
Description

of data attributes DCB

Protection
of printed output DPAGELBL
SYSAREA
Performance Control
by queue PRTY
selection
Processing Control
with additional OUTPUT DEFAULT
parameters code-name on
SYSOUT
by segmenting SEGMENT
with other data class on THRESHLD
sets SYSOUT (JESS only)
GROUPID (JES2
only)

2-8 0S/390 V2R10.0 MVS JCL Reference

Tasks

Figure 2-4 (Page 2 of 3). Tasks for Requesting Sysout Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
gi?:ZSETrING JCL Statements JES2 JES3
RESOURCES DD OUTPUT JCL Other JCL Statements Statements
by external writer-name on WRITER
writer SYSOUT
by mode PRMODE
by holding HOLD class on CLASS OUTDISP
SYSOUT
by suppressing DUMMY class OUTDISP=PURGE
output on SYSOUT on OUTPUT
with CKPTLINE CKPLNS and
checkpointing CKPTPAGE CKPPGS on
CKPTSEC /*OUTPUT
by Print COLORMAP
Services Facility COMSETUP
(PSF) DUPLEX
FORMDEF
FORMLEN
INTRAY
OFFSETXB
OFFSETXF
OFFSETYB
OFFSETYF
OVERLAYB
OVERLAYF
PAGEDEF
PRTERROR
RESFMT
USERLIB
by IP Printway PORTNO
End Processing
unallocation FREE
SPIN
Destination Control
to local or DEST class on DEST /*ROUTE ORG on
remote device or SYSOUT COMPACT PRINT /I"MAIN
to another node /*ROUTE
PUNCH
to another ACMAIN on
processor /I"MAIN
to internal INTRDR as /*EOF
reader writer-name on /*DEL
SYSOUT *PURGE
/*SCAN
to terminal TERM
to assist in ADDRESS ROOM on
sysout BUILDING /*OUTPUT
distribution DEPT
NAME
ROOM
TITLE

Output Formatting

Chapter 2. Job Control Tasks

2-9

Tasks

Figure 2-4 (Page 3 of 3). Tasks for Requesting Sysout Data Set Resources

TASKS FOR STATEMENTS AND PARAMETERS FOR TASK
gi?:ESSETI_ING JCL Statements JES2 JES3
RESOURCES DD OUTPUT JCL Other JCL Statements Statements
to any printer COPIES FCB COPIES forms, copies, and COPIES, COPIES and
form-name on FCB linect on JOB JES2 FORMS, and FORMS on
SYSOUT FORMS accounting LINECT on /"FORMAT PR
LINECT information /*JOBPARM
ucCs (JES2 only)
uUcs COPIES, FCB,
CONTROL and FORMS on
/*OUTPUT
to 3800 Printing BURST BURST CHARS BURST on CHARS and
Subsystem in CHARS FLASH MODIFY /*JOBPARM FLASH on
addition to most FLASH TRC /"FORMAT PR
of printer MODIFY CHARS, FLASH,
parameters DCB= and BURST on
OPTCD=J /*OUTPUT
to 3211 Printer INDEX (JES2
with indexing LINDEX only)
feature
to punch COPIES FCB COPIES
form-name on FCB
SYSOUT FORMS
DCB=FUNC=I
of dumps on CHARS=DUMP CHARS=DUMP
3800 Printing FCB=STD3 FCB=STD3
Subsystem
Output Limiting
OuUTLIM lines and cards BYTES, BYTES,
on JOB JES2 CARDS, CARDS,
accounting LINES, and LINES, and
information PAGES on PAGES on
/*JOBPARM /I*MAIN
BYTES, CARDS,
LINES, and PAGES
on JOB
USERDATA Specifications
Installation USERDATA
specifications

2-10 0S/390 V2R10.0 MVS JCL Reference

Format: Fields

Chapter 3. Format of Statements

This chapter describes the fields in JCL, JES2, and JES3 statements. It ends with
the conventions for continuing statements.

JCL Statement Fields

A JCL statement consists of one or more 80-byte records. Each record is in the
form of an 80-column punched-card image. Each JCL statement is logically divided
into the following five fields. All five fields do not appear on every statement; see
[Figure 3-1 on page 3-2|for the fields that can appear on each statement.

Identifier field
The identifier field indicates to the system that a statement is a JCL statement
rather than data. The identifier field consists of the following:

e Columns 1 and 2 of all JCL statements, except the delimiter statement,
contain //

e Columns 1 and 2 of the delimiter statement contain either /* or two other
characters designated in a DLM parameter to be the delimiter

e Columns 1, 2, and 3 of a JCL comment statement contain //*

Name field
The name field identifies a particular statement so that other statements and
the system can refer to it. For JCL statements, code the name as follows:

e The name must begin in column 3.

» The name is 1 through 8 alphanumeric or national ($, #, @) characters.
See [Figure 4-2 on page 4-3|for the character sets.

» The first character must be an alphabetic or national ($, #, @).

* The name must be followed by at least one blank.

Operation field
The operation field specifies the type of statement, or, for the command
statement, the command. Code the operation field as follows:

e The operation field consists of the characters in the syntax box for the
statement.

e The operation follows the name field.

e The operation must be preceded and followed by at least one blank.

Parameter, or operand field
The parameter field, also sometimes referred to as the operand field, contains
parameters separated by commas. Code the parameter field as follows:

e The parameter field follows the operation field.
e The parameter field must be preceded by at least one blank.

See [‘Parameter Field” on page 3-3|for details on coding the parameter field.

Comments field
The comments field contains any information you deem helpful when you code
the control statement. Code the comments field as follows:

© Copyright IBM Corp. 1988, 2000 3-1

Format: Fields

e The comments field follows the parameter field.
* The comments field must be preceded by at least one blank.

You can code comments after the parameter field even though you continue
the parameter field on a subsequent statement; see FContinuing JCL]|

[Statements” on page 3-5|

For most statements, if you do not code any parameters, do not code any

comments.

Figure 3-1. JCL Statement Fields

Statement Fields
JCL Command // command [parameter] [comments]
COMMAND /lname] COMMAND ‘command command-operand’ [comments]
Comment /[* comments
CNTL /Nlabel CNTL [* comments]
DD /[ddname] DD [parameter [comments]]
/[ddname] DD
Delimiter /* [comments]
xx [comments]
ENDCNTL //[label] ENDCNTL [comments]
EXEC //[stepname] EXEC parameter [comments]

IF/THEN/ELSE/ENDIF

/Iname IF [relational expression] THEN [comments]
/Iname ELSE [comments]
//Iname ENDIF [comments]

INCLUDE /lname] INCLUDE parameter [comments]

JCLLIB /l[name] JCLLIB parameter [comments]

JOB /ljiobname JOB [parameter [comments]]
/ljobname JOB

Null I

OUTPUT JCL //name OUTPUT parameter [comments]

PEND /[name] PEND [comments]

PROC (cataloged) /lname] PROC [parameter [comments]]
/lname] PROC

PROC (in-stream) //name PROC [parameter [comments]]
//Iname PROC

SET /l[name] SET parameter [comments]

XMIT /lname] XMIT parameter[,parameter] [comments]

Location of Fields on Statements

Code the identifier field beginning in column 1 and the name field immediately after
the identifier, with no intervening blanks. Code the operation, parameter, and
comments fields in free form. Free form means that the fields need not begin in a
particular column. Between fields leave at least one blank; the blank serves as the
delimiter between fields.

Do not code fields, except on the comment statement, past column 71. If the total
length of the fields would exceed 71 columns, continue the fields onto one or more
following statements. Continuing fields is described under [‘Continuing JCL|
[Statements” on page 3-5 The comment statement can be coded through column
80.

3-2 0S/390 V2R10.0 MVS JCL Reference

Format: Fields

Use Keywords Only for Parameters or Subparameters

Do not use parameter or subparameter keywords from any JCL, JES2, or JES3
statements as symbolic parameters, names, or labels.

Parameter Field
The parameter field consists of two types of parameters: positional parameters
and keyword parameters. All positional parameters must precede all keyword
parameters. Keyword parameters follow the positional parameters.

Commas

Use commas to separate positional parameters, keyword parameters, and
subparameters in the parameter field.

Positional Parameters

A positional parameter consists of:

e Characters that appear in uppercase in the syntax and must be coded as
shown

¢ Variable information, or

e A combination.

For example, DATA on a DD statement, programmer's-name on a JOB statement,
and PGM=program-name on an EXEC statement.

Code positional parameters first in the parameter field in the order shown in the
syntax. If you omit a positional parameter and code a following positional
parameter, code a comma to indicate the omitted parameter. Do not code the
replacing comma if:

e The omitted positional parameter is the last positional parameter.
* All following positional parameters are also omitted.

e Only keyword parameters follow.

¢ All positional parameters are omitted.

Keyword Parameters

A keyword consists of characters that appear in uppercase in the syntax and must
be coded as shown followed by an equals sign followed by either characters that
must be coded as shown or variable information. For example, RD=R and
MSGCLASS=class-name on the JOB statement.

Code any of the keyword parameters for a statement in any order in the parameter
field after the positional parameters. Because of this positional independence, never
code a comma to indicate the absence of a keyword parameter.

Multiple Subparameters
A positional parameter or the variable information in a keyword parameter
sometimes consists of more than one item, called a subparameter list. A

subparameter list can consist of both positional and keyword subparameters.
These subparameters follow the same rules as positional and keyword parameters.

Chapter 3. Format of Statements 3-3

Format: Fields

When a parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in parentheses or, if
indicated in the syntax, by apostrophes. If the list is a single keyword subparameter
or a single positional subparameter with no omitted preceding subparameters, omit
the parentheses or apostrophes.

Null Positional Subparameters

You are allowed to specify null (that is, omitted) positional subparameters except
where the Syntax section of a particular parameter states otherwise. (For example,
null positional subparameters are not allowed on a COND parameter of an EXEC
statement or on an AMP parameter of a DD statement.) You specify a null
positional subparameter by following the coding rules listed above for an omitted
positional parameter.

JES2 Control Statement Fields

The rules for coding JES2 control statements are the same as the rules for JCL
statements, with the following additions:

e Columns 1 and 2 always contain the characters /*

e Do not code comments on any JES2 statements. Where comments are
needed, code a JCL comment statement.

 If you code the same parameter on the same statement more than once, JES2
uses the value in the last parameter.
When coding a JES2 control statement more than once, be aware of the following
JES2 actions:

 If the same parameter appears on more than one statement, JES2 uses the
value coded on the last statement.

* If the statements contain different parameters, JES2 uses all parameters
combined.

JES3 Control Statement Fields

The rules for coding JES3 control statements are the same as the rules for JCL
statements, with the following additions:

e Columns 1, 2, and 3 generally contain the characters //* (slash-slash-asterisk).
Some JESS3 control statements may contain, and certain other JES3 control
statements must contain only a single slash-asterisk (/*) in columns 1 and 2.

e Columns 3 and 4 must not be blank.

¢ To code a comment on a JES3 control statement, code a blank after the
control statement, and end the comment before column 72.

3-4 0S/390 V2R10.0 MVS JCL Reference

Format: Continuing Statements

Continuing Statements

Continuing JCL Statements

When the total length of the fields on a control statement exceeds 71 columns,
continue the fields onto one or more card images.

The following are JCL statements that you cannot continue. While you cannot
continue these statements, you can code as many separate statements as you
need.

JCL Command statement
Comment statement
Delimiter statement

Null statement

For all other JCL statements, you can continue the parameter field or the
comments field on the JCL statement. If you continue both the parameter field and
the comments field on the same card image, the system ignores the indication to
continue the comment. How you continue a parameter field depends on whether or
not the parameter is enclosed in apostrophes.

Continuing the Parameter Field
1. Interrupt the field after a complete parameter or subparameter, including the
comma that follows it, at or before column 71.

2. Code // in columns 1 and 2 of the following statement.

3. Code a blank character in column 3 of the following statement. If column 3
contains anything but a blank or an asterisk, the system assumes the following
statement is a new statement. The system issues an error message indicating
that no continuation is found and fails the job.

4. Continue the interrupted parameter or field beginning in any column from 4
through 16.

Continuing Parameter Fields Enclosed in Apostrophes
To continue a parameter that is enclosed in apostrophes:

1. Extend the parameter to column 71.

Do not code an apostrophe in column 71 of a JCL statement that is continued.
The system interprets the apostrophe in column 71 as the final character in the
statement and ignores the continuation. See the following example:

column
71

// COMMAND 'RO MVSA,S GTF.RLW,, ,MBR=UNITTEST,SPC=(CYL,(160,100)),VLSR="
// 'VOL=SER=VOLOO1,"',0DSN-W123456"

To correct this problem, split the statement in a different way. For example,
start COMMAND in a later column or interchange non-positional parameters in
the statement.

2. Code // in columns 1 and 2 of the following statement.

3. Continue the parameter in column 16 of the following statement even if this
splits the parameter. Trailing blanks or commas within the apostrophes do not

Chapter 3. Format of Statements 3-5

Format: Continuing Statements

indicate a continued statement; the system treats them as part of the
parameter.

Continuing the Comments Field
Include comments by following an interrupted parameter field with at least one
blank. To continue a comment:

1. Interrupt the comment at a convenient place before column 72, up to and
including column 71.

2. Code a nonblank character in column 72.
3. Code // in columns 1 and 2 of the following statement.
4. Code a blank character in column 3 of the following statement.

5. Continue the comments field beginning in any column after column 3.

You can use JCL comment statements as an alternative way to imbed comments in
the JCL stream.

Examples of Continued Statements
Example 1

//DD1 DD DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=3350,
// VOLUME=335023,SPACE=(TRK, (80,15)) ,DISP=(,PASS)

This example shows continuation of the parameter field. The parameter field is
continued from the first card image to the second card image.

Example 2

//DS1 DD DSNAME=INDS,DISP=0LD,CHKPT=EQV, MY INPUT DATA SET
// UNIT=SYSSQ,VOLUME=SER=(TAPEQ1,TAPEQ2,TAPEO3)

This example shows continuation of the parameter field. The parameter field is
continued from the first card image to the second card image. The comment on the
first card image is not continued to the next card image.

Example 3

//STP4 EXEC PROC=BILLING,COND.PAID=((20,LT),EVEN),

// COND.LATE=(60,GT,FIND),

/l COND.BILL=((20,GE), (30,LT,CHGE)) THIS STATEMENT CALLS X
/l THE BILLING PROCEDURE AND SPECIFIES RETURN CODE TESTS
/l FOR THREE PROCEDURE STEPS.

>

This example shows continuation of the parameter field and the comments field.
The parameter field is continued from the first card image to the second and third
card images. The comments field is continued from the third card image to the
fourth and fifth card images.

Example 4
//S1 EXEC PGM=IEFBR14,PARM='THIS IS A LONG PARAMETER WITHIN APOST
// ROPHES, CONTINUED IN COLUMN 16 OF THE NEXT RECORD'

This example shows continuation of a parameter field when a parameter is
enclosed in apostrophes. The parameter field is continued from column 71 of the
first card image to column 16 of the second.

3-6 0S/390 V2R10.0 MVS JCL Reference

Format: Continuing Statements

Continuing JES2 Control Statements

The only JES2 control statement that you can continue is the /“OUTPUT statement.
For all other JES2 control statements, code the statement as many times as
needed.

Continuing JES3 Control Statements

Continue JESS statements, except the command statement or /"NETACCT
statement, by:

1. Coding a comma as the last character of the first statement.
2. Coding //* in columns 1 through 3 of the continuation statement.
3. Resuming the code in column 4 of the continuation statement.

On the JES3 //*NET statement, each parameter must appear entirely on one
statement; a subparameter cannot be continued after a comma, except for the
RELEASE parameter. To continue the RELEASE parameter, end the statement
with the comma following a jobname and continue the next statement with the next
jobname. The left parenthesis appears at the beginning of the jobname list and the
right parenthesis appears at the end of the list. For example:

//*NET NETID=EXP1,RELEASE=(JOB35,J0B27Z,MYJOB,
//*WRITJB,JOBABC)

If the parameters on a //*NETACCT statement cannot fit on one statement, code
more than one //*NETACCT statement.

Chapter 3. Format of Statements ~ 3-7

Format: Continuing Statements

3-8 05/390 V2R10.0 MVS JCL Reference

Syntax: Notation

Chapter 4. Syntax of Parameters

Syntax rules define how to code the fields and parameters on job control
statements. The syntax indicates:

¢ What the system requires.
e What is optional for the specific purpose or process you are requesting.
* How the parameters are to appear.

The syntax rules apply to all job control statements: JCL statements, JES2 control
statements, and JES3 control statements.

You must follow the syntax rules in coding job control statements to achieve
specific results. If you do not follow the rules, you may get error messages or
unpredictable results. IBM does not support the use of statements or
parameters to achieve results other than those stated in this publication.

Notation Used to Show Syntax

The syntax of the job control statements and of their parameters appear in the
chapters that describe the statements. The notation used in this publication for the
syntax is shown in Figure 4-1.

Figure 4-1 (Page 1 of 2). Notation Used to Show Syntax

Notation

Meaning Examples

Uppercase letters, words,
and characters

Code uppercase letters, words, and the
following characters exactly as they appear
in the syntax.

& ampersand
* asterisk

, comma

= equal sign
() parentheses
. period

/ slash

Lowercase letters, words,
and symbols

Lowercase letters, words, and symbols in the
syntax represent variables. Substitute
specific information for them.

Syntax: on JOB statement
CLASS=jobname

Coded:
CLASS=A

| (vertical bar)

A vertical bar indicates an exclusive OR. Syntax: on DD DCB parameter

{} (braces)

Never code | on a control statement. It is BFALN={FID}
used between choices within braces or c i
e oded:
brackets; it indicates that you code only one BEALN=F
of the items within the braces or brackets. or
BFALN=D
Braces surround required, related items and Syntax: on DD SPACE parameter
indicate that you must code one of the {TRK }
enclosed items. Never code { or } on a {cyL }
control statement. {b1k1gth}
{reclgth}
Coded:
TRK or
CYL or
960

© Copyright IBM Corp. 1988, 2000

4-1

Syntax: Notation

Figure 4-1 (Page 2 of 2). Notation Used to Show Syntax

Notation Meaning

Examples

[] (brackets) Brackets surround an optional item or items
and indicate that you can code one or none
of the enclosed items. Never code [or] on a
control statement.

Syntax: on DD UNIT parameter
[,DEFER]

Coded:
,DEFER
or
omitted

Syntax: on DD LABEL parameter

[,RETPD=nnnn 1
[LEXPDT= {yyddd }]
[{yyyy/ddd}]

Coded:
,RETPD=nnnn
or
,EXPDT=yyddd
or
,EXPDT=yyyy/ddd
or
omitted

{,}or[,] One of the items in braces or brackets can
be a comma. Code the comma when you do
not code any of the other items in the braces
or brackets but you are coding a following
part of the parameter.

Syntax: on DD UCS parameter
UCS=(character-set-code[,FOLDI,]
[,VERIFY])

Coded:
UCS=(character-set-code)
UCS=(character-set-code,FOLD)
UCS=(character-set-code,FOLD,
VERIFY)
UCS=(character-set-code,,VERIFY)

Note that the comma is not coded if both
FOLD and VERIFY are omitted, but must
appear if FOLD is omitted and VERIFY
follows.

parameter consists of a symbolic parameter
followed by a period and then by other code,
so that only part of the parameter is variable.

__ (underline) An underline indicates the default that the Syntax: on JOB or EXEC statement
system uses when you do not code a ADDRSPC={VIRTIREAL}
subparameter. Coded:

ADDRSPC omitted means
ADDRSPC=VIRT

... (ellipsis) An ellipsis follows an item that you can code Syntax: on DD statement
more than once. Never code ... on a control COND=((code,operator)[,(code,operator)]....
statement. Coded:

Can repeat ,(code,operator)

Thus:

COND=((12,GE),(8,EQ),(4,EQ))
.. (two consecutive periods) Two consecutive periods indicate that a Coded: &DEPT..NYC

Meaning:
If &DEPT is D27:
D27.NYC is the value

4-2 0S/390 V2R10.0 MVS JCL Reference

Syntax: Character Sets

Character Sets

To code job control statements, use characters from the character sets in
Figure 4-2. Figure 4-3 lists the special characters that have syntactical functions in
job control statements.

Figure 4-2. Character Sets

Character Set Contents

Alphanumeric Alphabetic Capital A through Z
Numeric 0 through 9

National “At” sign @ (Characters that can be

(See note) Dollar sign $ represented by hexadecimal
Pound sign # values X'7C', X'5B"', and X'7B")
Comma ,
Period .
Slash /
Apostrophe !

Left parenthesis
Right parenthesis

* — o~

Special Asterisk
Ampersand &
Plus sign +
Hyphen -
Equal sign =
Blank
EBCDIC text EBCDIC printable character set Characters that can be represented
by hexadecimal X'40' through
X'FE'

Note: The system recognizes the following hexadecimal representations of the U.S. National
characters; @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the U.S., the
U.S. National characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character may generate a X'4A".

Figure 4-3. Special Characters Used in Syntax

Character Syntactical Function

, To separate parameters and subparameters

= To separate a keyword from its value, for example, BURST=YES

(b) To enclose subparameter list or the member name of a PDS or PDSE
& To identify a symbolic parameter, for example, &LIB
&& To identify a temporary data set name, for example, &&TEMPDS, and, to identify

an in-stream or sysout data set name, for example, &&PAYOUT

To separate parts of a qualified data set name, for example, A.B.C., or parts of
certain parameters or subparameters, for example, nodename.userid

To refer to an earlier statement, for example, OUTPUT="*.name, or, in certain
statements, to indicate special functions: //label CNTL * //ddname DD *
RESTART=" on the JOB statement

To enclose specified parameter values which contain special characters
(blank) To delimit fields

Special Characters in Parameters
The syntax or parameter description indicates if the variable that you code can

contain special characters or not. Parameters and subparameters that can contain
special characters not used for syntactical functions usually must be enclosed in

Chapter 4. Syntax of Parameters 4-3

Syntax: Character Sets

apostrophes, for example, ACCT="'123+456'. Code each apostrophe that is part of
the parameter or subparameter as two consecutive apostrophes, for example, code
O'NEIL as 'O''NEIL".

Figure 4-4 lists the parameters that can contain certain special characters without
requiring enclosing apostrophes.

Ampersands are used in JCL to indicate the beginning of a symbolic parameter
(see ['Using System Symbols and JCL Symbols” on page 5-13). If a parameter
contains an ampersand and you do not want the system to interpret the ampersand
as a symbolic parameter, code the ampersand as two consecutive ampersands.
For example, code

//S1 EXEC PGM=IEFBR14,ACCT='&&ABC'
//DD1 DD DSN=&&TEST,UNIT=SYSDA,SPACE=(TRK, (1,1))

The system treats double ampersands as a single character. IBM recommends that
you use apostrophes to enclose parameters that contain ampersands (other than a
DSNAME parameter representing a temporary data set) to further reduce the
possibility of error.

Figure 4-4. Special Characters that Do Not Require Enclosing Apostrophes

Statement and Parameter
or Subparameter

Special Characters Not Needing
Enclosing Apostrophes

Examples

JOB accounting information

Hyphens (-)

//JOBA JOB D58-D04

JOB programmer's-name

Hyphens (-), leading periods, or embedded
periods. Note that a trailing period requires
enclosing apostrophes.

//JOBB JOB ,S-M-TU
//[JOBC JOB ,.ABC
//JOBD JOB ,P.F.M
//JOBE JOB /A.B.C.

EXEC ACCT Hyphens (-) or plus zero (+0, an overpunch) //S1 EXEC PGM=A,ACCT=D58-LOC
//S2 EXEC PGM=B,ACCT=D04+0
DD DSNAME Hyphens (-) DSNAME=A-B-C
Periods to indicate a qualified data set name DSNAME=A.B.C

Double ampersands to identify a temporary
data set name, and to identify an in-stream
or sysout data set name

DSNAME=&&TEMPDS

DSNAME=&&PAYOUT

Parentheses to enclose the member name of
a partitioned data set (PDS) or partitioned
data set extended (PDSE), the area name of
an indexed sequential data set, or the
generation number of a generation data set
name of a partitioned data set (PDS) or
partitioned data set extended (PDSE), the
area name of an indexed sequential data set,
or the generation number of a generation
data set

DSNAME=PDS1(MEMA)
DSNAME=ISDS(PRIME)
DSNAME=GDS(+1)

Plus (+) or minus (-) sign to identify a
generation of a generation data group

DSNAME=GDS(-2)

DD VOLUME=SER

Hyphens (-)

VOLUME=SER=PUB-RD

DD UNIT device-type

Hyphens (-)

UNIT=3330-1

4-4 0S/390 V2R10.0 MVS JCL Reference

Syntax: Backward References

Syntax Notes

JCL positional parameters and keywords can have at most two levels of
subparameters. Therefore, when parentheses are used to delimit a list of
subparameters, a maximum of two levels of parenthesis nesting is permitted. This
restriction applies even if the parentheses are empty.

Backward References

Many parameters in job control statements can use a backward reference to fill in
information. A backward reference is a reference to an earlier statement in the job
or in a cataloged or in-stream procedure called by a job step. A backward reference
is in the form:

¢ *.name or *.ddname where name or ddname is the name field of the
referenced statement.

» *.stepname.name or *.stepname.ddname where the referenced statement,
name or ddname, is in an earlier step, stepname, in the same job.

» *.stepname.procstepname.name or *.stepname.procstepname.ddname
where this job step or an earlier job step, stepname, calls a procedure; the
procedure contains procedure step, procstepname, which contains the
referenced statement, name or ddname.

If stepname is specified without a procstepname, it identifies an EXEC statement
that contains a PGM parameter, not one that invokes a procedure. Similarly, if
stepname.procstepname is coded, procstepname identifies an EXEC statement
containing the PGM parameter in the procedure invoked by stepname.

The backward reference lets you copy previously coded information or refer to an
earlier statement. The following parameters can make backward references:

e DD CNTL refers to earlier CNTL statement

e DD DCB refers to earlier DD statement to copy its DCB parameter

e DD DSNAME refers to earlier DD statement to copy its DSNAME parameter,
whether or not the data set is a partitioned data set, and whether or not the
data set is a temporary data set

e DD OUTPUT refers to earlier OUTPUT JCL statement
e DD REFDD refers to earlier DD statement to copy its data set attributes

e DD VOLUME=REF refers to earlier DD statement to use the same volume(s).
The LABEL label type subparameter is also copied from the referenced DD
statement.

e EXEC PGM refers to an earlier DD statement that defines the program to be
executed as a member of a partitioned data set
The following statements cannot be referenced:
e DD * statement in DCB, DSNAME, or VOLUME parameter
e DD DATA statement in DCB, DSNAME, or VOLUME parameter

e DD DUMMY statement in VOLUME or UNIT parameter. The referring DD
statement acquires a dummy status.

Chapter 4. Syntax of Parameters 4-5

Syntax: Backward References

e DD DYNAM statement

e DD statement containing FREE=CLOSE in VOLUME or UNIT parameters
¢ Nested procedure statements

e Sysout DD statement

» DD statement that is the target of a DDNAME= reference.

* A DD statement containing a PATH parameter
Examples of Backward References
Example 1
//J0B1 JOB

//STEPA EXEC
//bD1 DD DSNAME=REPORT

//DD4 DD . DSNAME=+.DD1

The referring and referenced DD statements are in the same step.
Example 2

//J0B2 JOB

//STEP1 EXEC
/ /DDA DD DSNAME=D58. POK.PUBSO1

//STEP2 EXEC
//DDB DD DSNAME=+.STEP1.DDA

The referring and referenced DD statements are in different steps in the same job.
Example 3

Cataloged procedure PROC1 contains:
//PS1 EXEC

//PSTEP1 EXEC
//DS1 DD DSNAME=DATA1
//PSTEP2 EXEC
//DS2 DD DSNAME=DATAZ2

The job contains:

//J0B5 JOB
//CALLER EXEC PROC=PROC1

//REF1 DD DSNAME=+.CALLER.PSTEP2.DS2
//NEXT EXEC
//REF2 DD DSNAME=+.CALLER.PSTEP1.DS1

4-6 0S/390 V2R10.0 MVS JCL Reference

Syntax: Backward References

DD statement REF1 in the calling step refers to DD statement DS2 in procedure
step PSTEP2. DD statement REF2 in a step after the calling step refers to DD
statement DS1 in procedure step PSTEP1. Note that the entire procedure is
processed when the calling EXEC statement is processed; therefore, all DD
statements in the procedure are earlier than all DD statements in the calling step.

Chapter 4. Syntax of Parameters 4-7

Syntax: Backward References

4-8 0S/390 V2R10.0 MVS JCL Reference

Procedures

Chapter 5. Procedures and Symbols

This chapter describes how to use procedures, including nested procedures. It also
explains how to use JCL symbols and system symbols.

Cataloged and In-Stream Procedures

For jobs that you run frequently or types of jobs that use the same job control,
prepare sets of job control statements, called procedures.

In-stream Procedures

When you place a procedure in the job input stream, it is called an in-stream
procedure.

An in-stream procedure must begin with a PROC statement, end with a PEND
statement, and include only the following other JCL statements: CNTL, comment,
DD, ENDCNTL, EXEC, IF/THEN/ELSE/ENDIF, INCLUDE, OUTPUT JCL, and SET.
You must observe the following restrictions regarding in-stream procedures:

e Do not place any JCL statements (other than the ones listed above) or any
JES2 or JESS3 control statements in the procedure.

e Do not place an in-stream data set (one that begins with DD * or DD DATA) in
the procedure.

* Do not define one in-stream procedure within another, that is, nested. For
information about nesting procedures, see |‘Nested Procedures” on page 5-10|

* Do not use an in-stream procedure if the procedure will be run as a started job
under the MASTER subsystem, that is, includes a JOB statement and is started
via a START command such as S prochame,SUB=MSTR.

Cataloged Procedures
A procedure that you catalog in a library is called a cataloged procedure.

A cataloged procedure may consist of these JCL statements: CNTL, command, DD,
ENDCNTL, EXEC, IF/THEN/ELSE/ENDIF, INCLUDE, OUTPUT JCL, and SET.
Optionally, a cataloged procedure can begin with a PROC statement and end with
a PEND statement. If coded, PROC must be the first statement in the procedure.

Cataloging a Procedure

The library containing cataloged procedures is a partitioned data set (PDS) or a
partitioned data set extended (PDSE). The system procedure library is
SYS1.PROCLIB. The installation can have many more procedure libraries with
different names. You can also have procedures in a private library. The name of a
cataloged procedure is its member name or alias in the library.

When a cataloged procedure is called, the calling step receives a copy of the
procedure; therefore, a cataloged procedure can be used simultaneously by more
than one job.

If you are modifying a cataloged procedure, do not run any jobs that use the
procedure during modification.

© Copyright IBM Corp. 1988, 2000 5-1

Procedures

In a JES3 system, you can specify UPDATE on the JES3 //*MAIN statement to
update a procedure library.

Using a Procedure
To execute a procedure, call it on an EXEC statement in an in-stream job. Specify
the name of the procedure in the PROC parameter of the EXEC statement. The
step uses the JCL statements in the procedure as if the JCL statements appeared
in the input stream immediately following the EXEC statement. If necessary, you
can modify the procedure for the current execution of the job step.

When you call a procedure, the system retrieves it using the following search order:
1. From the input stream

If the called procedure is an in-stream procedure, the system retrieves it from
the job input stream. You must place the in-stream procedure before the EXEC
statement that calls it.

2. From a private library

If the called procedure is cataloged in a private library, the system retrieves it
from the private library that you specify on the JCLLIB statement that appears
earlier in the job stream.

3. From the system library (in a non-APPC scheduling environment)

If the called procedure is cataloged in a system library, the subsystem retrieves
it as follows:

e In JES2, from the library name on the PROCLIB= parameter on a JES2
/*JOBPARM statement. See[7*JOBPARM Statement” on page 27-3| for
more information.

e In JES3, from the library name on the PROC= parameter of the JES3
//*MAIN statement. See [//*"MAIN Statement” on page 28-22| for more
information.

e In MSTR, the dataset specified by the IEFPDSI DD statement in the
currently active master JCL is searched for procedures. The default master
JCL specifies SYS1.PROCLIB.

Testing a Procedure

Before putting a procedure into a system procedure library, you should test it.
There are two ways to test a procedure:

e Place a PROC statement before the procedure and a PEND statement after it
and place it in a job input stream. For the test, call this in-stream procedure
with an EXEC statement that appears later in the same job.

e Put a procedure to be tested in a private library, identify the library on a JCLLIB
statement, and call the procedure with an EXEC statement.
After testing a procedure, the type of environment in which you are running the job
determines where you can catalog it.

e In an APPC scheduling environment: Catalog the procedure in a private
library, and define the library with a JCLLIB statement.

e In a non-APPC scheduling environment: Catalog the procedure in the
system procedure library SYS1.PROCLIB, an installation-defined procedure
library, or a private library. Cataloging the procedure in the system procedure

5-2 0S/390 V2R10.0 MVS JCL Reference

Modifying Procedures

library allows anyone to use the procedure by calling it with an EXEC
statement.

Cataloged and in-stream procedures are not checked for correct syntax until an
EXEC statement that calls the procedure is checked for syntax. Therefore, a
procedure can be tested only if an EXEC statement calls it.

Modifying Procedures

Explanation

There are two ways you can modify a procedure:

e Using system symbols and JCL symbols
e Using overrides.

Using system symbols and JCL symbols, you can design your procedures to be
easily modified. If the procedure does not contain required system symbols and
JCL symbols, you can override the statement.

For its current execution, you can override an in-stream or cataloged procedure by:

e Overriding, nullifying, or adding EXEC statement parameters
e Overriding, nullifying, or adding parameters to DD or OUTPUT JCL statements
e Adding DD or OUTPUT JCL statements

Overriding a parameter modifies only that parameter; the system uses all other
parameters on the original statement. For example, if you override the data set
name on a DD statement that includes a UNIT and VOL=SER parameter, the
system will still use the UNIT and VOL=SER parameters.

Invalid parameters in a procedure cannot be corrected through overrides. Before
processing overrides, the system scans the original procedure statements for errors
and issues error messages.

Modifying EXEC Statement Parameters
All keyword parameters on the calling EXEC statement affect the execution of the
procedure, as follows:

All procedure statements

If a keyword parameter is to override the parameter or be added to every EXEC
statement in the procedure, code the parameter in the usual way. For example, the
ACCT parameter applies to all steps:

//STEP1 EXEC PROC=RPT,ACCT=5670

Note: A PARM parameter without a procstepname qualifier applies only to the first
procedure step. A TIME parameter without a procstepname qualifier applies
to the entire procedure and nullifies any TIME parameters on procedure
step EXEC statements.

If the keyword parameter is to nullify the parameter on every EXEC statement in

the procedure, code it without a value following the equal sign. For example, the
ACCT parameter is nullified in all steps:

Chapter 5. Procedures and Symbols ~ 5-3

Modifying Procedures

//STEP2 EXEC PROC=RPT,ACCT=
Only one procedure statement

If the keyword parameter is to override the parameter or be added to only one
EXEC statement in the procedure, code .procstepname immediately following the
keyword. The procstepname is the name field of the procedure EXEC statement
containing the keyword parameter to be overridden. For example, the ACCT
parameter applies to only step PSTEPWED:

//STEP1 EXEC PROC=RPT,ACCT.PSTEPWED=5670
If the keyword parameter is to nullify the parameter on only one EXEC statement in
the procedure, code it with the procstepname. For example:
//STEP2 EXEC PROC=RPT,ACCT.PSTEPTUE=
The override, nullification, or addition applies only to the current execution of the
job step; the procedure itself is not changed.
Rules for Modifying EXEC Parameters
¢ You cannot modify a PGM parameter.

* The calling EXEC statement can contain changes for more than one parameter
and for the same parameter in more than one step in a called procedure. (If
you code multiple overrides for any parameter in the same step, only the last
specification will be effective.)

¢ Modifying parameters should appear in the following order:
— Parameters without a procstepname qualifier.

— All parameters modifying the first step, then the second step, then the third
step, and so forth.

* You do not need to code the parameters for each step in the same order as
they appear on the procedure EXEC statement.

* You must code an entire overriding parameter even if you are changing only
part of it.

Modifying OUTPUT JCL and DD Statements
OUTPUT JCL and DD statements that follow the calling EXEC statement

¢ Override, nullify, or add parameters to OUTPUT JCL and DD statements in the
procedure, or

e Are added to the procedure.

These changes affect only the current execution of the job step; the procedure itself
is not changed. When an OUTPUT JCL statement is modified, the sysout data set
is processed according to the parameters as modified by the overriding statement.

In a procedure, to ensure that OUTPUT JCL and DD statements are overridden
correctly by modifying statements, place the OUTPUT JCL statements before the
DD statements in each step of the procedure.

Location in the JCL

5-4 0S/390 V2R10.0 MVS JCL Reference

Modifying Procedures

Place modifying OUTPUT JCL and DD statements in the following order, after the
EXEC statement that calls the procedure:

» For each procedure step in the invoked procedure:

1. Overriding statements can appear in any order when they explicitly specify
the step that is being overridden. Added statements can appear in any
order when they specify the step explicitly.

2. Overriding and added statements that do not explicitly specify the step are
applied to the step named in the previous overriding or added OUTPUT
JCL or DD statement. If no previous override statement named a step, then
they are applied to the first step in the procedure.

e For all procedure steps in the invoked procedure, place the modifying
statements for each procedure step in the same order in which the procedure
steps are specified.

Coding an Overriding Input Stream DD Statement

Code overriding input stream DD statements in the order of the steps that they are
overriding. Within a step, code the overriding statements in the order of the DD
statements that they are overriding. If you do not code the overriding input stream
DD statements in the proper order, the system considers the overriding statements
to be additions to the step.

Coding an Overriding OUTPUT JCL or DD Statement

To override, nullify, or add parameters to a procedure OUTPUT JCL or DD
statement, code in the name field of the overriding OUTPUT JCL or DD statement
the name of the procedure step containing the overridden statement, followed by a
period, followed by the name of the procedure OUTPUT JCL statement or the
ddname of the procedure DD statement.

//pstepname.name OUTPUT parameters
//pstepname.ddname DD parameters

Rules for Modifying OUTPUT JCL or DD Parameters

The override operation merges the parameters from an overriding statement with
those in the overridden statement. Follow these rules in coding overriding
statements:

* You can code more than one change on an overriding statement.
e You can code modifying parameters in any order on an overriding statement.

e Code an entire overriding parameter even when changing only part of that
parameter.

* If you code a parameter on an overriding statement that is not on the
procedure statement, the override operation adds it to the procedure statement.

* Nullify a parameter by not coding a value after the equal sign. Omitting the
value causes the system to treat the keyword as if it had been removed from
the procedure statement. This is the only way to nullify keywords that do not
permit a null parameter value.

* If you add a parameter that is mutually exclusive with a parameter on a
procedure statement, the override operation automatically nullifies the

Chapter 5. Procedures and Symbols 5-5

Modifying Procedures

procedure parameter. This is the only exception to the rule that the only way to
override a parameter is to specify it explicitly.

Example:

If a DD statement within a procedure reads:
//ddname DD DSN=FRED,DISP=SHARE,UNIT=TAPE,VOL=SER=111111

and you wish to modify that DD statement to read in
data set GEORGE, which is cataloged to a DASD volume,
it is NOT sufficient to specify:

//stepname.ddname DD DSN=GEORGE
Instead you must specify:

//stepname.ddname DD DSN=GEORGE,UNIT=,VOL=
This nullifies the UNIT and VOLUME information, allowing
the system to retrieve that information from the catalog.
(An overriding DD statement without those parameters would

cause the system to find data set GEORGE on tape volume
serial 111111.)

Additional Rules for Modifying DD Parameters

e To nullify all parameters but the DCB parameter, code DUMMY on the
overriding DD statement.

e Special rules apply when overriding a DCB parameter:

— Code only the keyword subparameters to be changed; the other DCB
subparameters remain unchanged.

— If a positional subparameter is needed, code it, regardless of whether it
appears in the overridden DCB parameter. If a positional subparameter is
not needed or is to be nullified, omit it from the overriding DCB parameter.

— To nullify the entire DCB parameter, nullify each subparameter appearing in
the overridden DCB parameter.

e To nullify a DUMMY parameter on the procedure statement, code one of the
following on the overriding statement:

A DSNAME parameter with a name other than NULLFILE
A SYSOUT parameter

A * or DATA parameter

A SUBSYS parameter.

Adding an OUTPUT JCL or DD Statement

To add OUTPUT JCL or DD statements to a procedure step, code in the name field
of the added OUTPUT JCL or DD statement the name of the procedure step,
followed by a period, followed by a name or ddname. The name must not appear
on any procedure statement.

//pstepname.name OUTPUT parameters
//pstepname.ddname DD parameters

5-6 0S/390 V2R10.0 MVS JCL Reference

Modifying Procedures

If you omit the procedure step name, the statement is added to the step named in
the previous OUTPUT JCL or DD statement that named a step. If no previous
statements named steps, the statement is added to the first step in the procedure.

Added OUTPUT JCL and DD statements can contain symbols. If the statement is
being added to the last procedure step, any symbols it contains must appear
elsewhere in the procedure.

Supplying In-stream Data for a Procedure

To supply a procedure step with data from the input stream, code a DD * or DD
DATA statement in the calling step after the last overriding and added DD
statement. The name field of this statement must contain the name of the
procedure step, followed by a period, followed by a ddname. The ddname can be
of your choosing or predefined in the procedure. If it is predefined, it appears in a
DDNAME parameter on a procedure DD statement. For example:

//PROCSTP1.ANYNAME DD =*
//PROCSTP2.PREDEFN DD DATA

Rules for Modifying DD Statements in Concatenated Data Sets

* To override the first DD statement in a concatenation, code only one overriding
DD statement.

e To override any following DD statements in the concatenation, code an
overriding DD statement for each concatenated DD statement.

e The overriding DD statements must be in the same order as the concatenated
DD statements.

e Code a ddname on only the first overriding DD statement. Leave the ddname
field blank on the following statements.

e To leave a concatenated statement unchanged, code its corresponding
overriding DD statement with a blank operand (or parameter) field.

Examples of Procedures

Example 1

In the input stream:
//JOBA JOB ACCT23,'G. HILL'
//STEPA EXEC PROC=REP
//PSTEP1.INDS DD =*
(data)
/+ '
In SYS1.PROCLIB member REP:
/l PROC

//PSTEP1 EXEC PGM=WRIT22
//0UTDS DD SYSOUT=A

Chapter 5. Procedures and Symbols ~ 5-7

Modifying Procedures

In this example, the EXEC statement STEPA calls the cataloged procedure named
REP and supplies in-stream data. The procedure executes a program named
WRIT22. The output from the program will appear in the sysout class A data set.

Example 2

In the input stream:

//JOB1 JOB ,"H.H. MORRILL'
//ADD1 OUTPUT COPIES=2
//STEPA EXEC PROC=P
//PS1.0UTA OUTPUT CONTROL=DOUBLE,COPIES=5
//PS1.DSB DD OUTPUT=+.ADD1
//PS1.DSE DD *
(data)
/% '

//PS2.0UTB OUTPUT DEFAULT=YES,DEST=STL

In SYS1.PROCLIB member P:

//PS1 EXEC PGM=R15

//0UTA OUTPUT CONTROL=PROGRAM

//DSA DD SYSOUT=C,0UTPUT=+.0UTA
//DSB DD SYSOUT=D,0UTPUT=+.0UTA
//PS2 EXEC PGM=T48

//DSC DD SYSOUT=A

In this example, added statements are:
e ADD1, which is an OUTPUT JCL statement added at the job level.
e PS1.DSE, which is an in-stream data set added to procedure step PS1.
e PS2.0UTB, which is a default OUTPUT JCL statement added to procedure
step PS2.
Overriding statements are:

* PS1.0UTA, which changes the CONTROL parameter and adds a COPIES
parameter to OUTPUT statement OUTA in procedure step PS1.

e PS1.DSB, which changes the OUTPUT parameter on DD statement DSB in
procedure step PS1.

Example 3

5-8 05/390 V2R10.0 MVS JCL Reference

Modifying Procedures

//J0BB JOB ACCT23,'G. HILL'

//STEPB EXEC PROC=WRIT35,COND.PSTEP3=(4,GT,PSTEP1),RD=R
//PSTEP1.DD1 DD VOLUME=SER=,UNIT=SYSDA,DISP=(NEW,CATLG)
//PSTEP1.INDS DD =*

idata)

/*

//PSTEP2.DD3 DD DISP=(OLD,KEEP)
//PSTEP3.DD5 DD DUMMY
//PSTEP3.DD6 DD DSNAME=A.B.C
//PSTEP3.DD8 DD EXPDT=

In SYS1.PROCLIB member WRIT35:

/1l PROC

//PSTEP1 EXEC PGM=WT1,TIME=(,50)

//DD1 DD DSNAME=DATA1,DISP=(NEW,DELETE),SPACE=(TRK,(10,2)),
/l UNIT=3330,V0L=SER=1095

//DD2 DD DSNAME=&&WORK,UNIT=SYSDA,SPACE=(CYL, (10,1)),
/l DISP=(,PASS)

//PSTEP2 EXEC PGM=WT2,TIME=(,30)

//DD3 DD DSNAME=+,PSTEP1.DD2,DISP=(OLD,DELETE)
//PSTEP3 EXEC PGM=UPDT,TIME=(,45),RD=RNC

//DD4 DD SYSOUT=«

//DD5 DD DSNAME=DATA3,UNIT=3340,DISP=0LD,

// VOLUME=SER=335006

//DD6 DD DSNAME=QOUT,UNIT=3400-5

//DD7 DD SYSOUT=H

//DD8 DD DSNAME=A.B,DISP=(NEW,CATLG,DELETE),

/l SPACE=(TRK, (1)) ,EXPDT=92365,UNIT=SYSDA

In this example, EXEC statement STEPB calls the cataloged procedure WRIT35.
The COND parameter is added to the EXEC statement for PSTEP3. The RD
parameter is added to the EXEC statements for PSTEP1 and PSTEP2, and
overrides the RD parameter on the EXEC statement for PSTEP3.

In-stream DD statement PSTEP1.DD1 modifies DD statement DD1 in PSTEP1; it
nullifies the VOLUME=SER parameter and overrides the UNIT and DISP
parameters. Note that the parameters are not in the same order in the overriding
and overridden statements.

In-stream DD statement PSTEP1.INDS is added to PSTEP1, supplying in-stream
data to be read by program WT1.

In-stream DD statement PSTEP2.DD3 modifies DD statement DD3 in PSTEP2; it
overrides the DISP parameter. Note that the entire parameter is coded, even
though only the second subparameter is being changed.

In-stream DD statement PSTEP3.DD5 nullifies DD statement DD5 in PSTEPS.
However, DD statement DD5 will be checked for correct syntax.

In-stream DD statement PSTEP3.DD6 modifies DD statement DD6 in PSTEPS; it
overrides the DSNAME parameter.

Chapter 5. Procedures and Symbols ~ 5-9

Nested Procedures

In-stream DD statement PSTEP3.DD8 modifies DD statement DD8 in PSTEPS; it
nullifies the EXPDT parameter. Note that the EXPDT keyword cannot have a null
value. Therefore, you cannot nullify EXPDT by setting it to a substitution text in the
procedure DD and then nullifying the symbol on the invoking EXEC statement.
EXPDT can only be nullified by not coding a value for it on the overriding DD
statement.

Note that procedure DD statements DD2, DD4, and DD7 were not modified.

Nested Procedures

Cataloged and in-stream procedures can invoke other procedures (up to 15 levels
of nesting). In a procedure, an EXEC statement can invoke another procedure,
which can contain an EXEC statement to invoke another procedure, and so on.

Note that an in-stream procedure cannot be defined within another procedure. The
sequence PROC, PROC, PEND, PEND is not valid.

Nesting Procedures
The following shows how procedures can be nested:

Procedure C:

//C PROC

//CS1 EXEC PGM=GHI

// PEND
Procedure B:

//B PROC

//BS1 EXEC PROC=C

//BS2 EXEC PGM=DEF

// PEND
Procedure A:

//A PROC

//AS1 EXEC PROC=B

//AS2 EXEC PGM=ABC

// PEND
Job Stream:
//J0B1 JOB

//STEP1 EXEC PROC=A

//STEP2 ~ EXEC PGM=JKL

The following statements are equivalent to the nested procedures shown above and
show the levels of nesting (scoping) for the procedures.

5-10 05/390 V2R10.0 MVS JCL Reference

Nested Procedures

//J0B1 JOB Level 0
//CS1 EXEC PGM=GHI Level 3
//BS2 E).(EC PGM=DEF Level 2
//AS2 E).(EC PGM=ABC Level 1
//STEP2 E)'(EC PGM=JKL Level 0

Modifying Nested Procedures
The rules for modifying OUTPUT JCL and DD statements described in
[OUTPUT JCL and DD Statements” on page 5-4|apply to nested procedures.

In addition, the following rules apply to modifying statements in nested procedures.

1. Procedure and step names referenced by other statements in the job should be
unique within the job.

2. Modifying or additional JCL statements must appear in the job stream following
the EXEC statement for the procedure they are to modify and prior to the next
EXEC statement.

3. Modifying or additional JCL statements apply to one level of nesting only. You
can use statements to modify statements in a procedure only for the level of
nesting at which the EXEC statement for that procedure appears.

4. Modifying or additional JCL statements cannot themselves be modified. Do not
modify statements that are overrides or additions to a procedure.

5. Modifying or additional JCL statements can only have procstepname.name or
procstepname.ddname in their name field. Do not specify backward references
to nested procedures, such as procstepname.procstepname.ddname DD
parameters.

These rules are illustrated in the examples in this topic.

Examples of Modifying Nested Procedures
Examples are shown on the following pages.

Example 1

The following example shows overrides and additions to DD statements.

Chapter 5. Procedures and Symbols 5-11

Nested Procedures

Procedure C:

//C PROC
//CS1 EXEC PGM=CCC
//CS1DD1 DD DSNAME=A.B.C,DISP=SHR
//CS1DD2 DD SYSOUT=A
// PEND
Procedure B:
//B PROC
//BS1 EXEC PROC=C
//CS1.CS1DD1 DD DSNAME=X.Y.Z This statement is a valid
/1* override of procedure C, stepCSl
/1% for DD CS1DD1
/1*
//CS1.CS1DD3 DD SYSOUT=A This statement is a valid
/1* addition to procedure C, step CS1
//BS2 EXEC PGM=BBB
//BS2DD1 DD DSNAME=E,DISP=SHR
// PEND
Procedure A:
//A PROC
//AS1 EXEC PROC=B
//BS2.BS2DD2 DD DSNAME=G,DISP=SHR This statement is a valid
//* addition to procedure B, step BS2
//AS2 EXEC PGM=AAA
//AS2DD1 DD DSNAME=E,DISP=SHR
// PEND
Job Stream:
//J0B1 JOB
//STEP1 EXEC PROC=A
//AS2.AS2DD2 DD DSNAME=G,DISP=SHR This statement is a valid
//* addition to procedure A, step AS2
//STEP2 EXEC PGM=IEFBR14

The following statements are equivalent to the nested procedures shown above.

//J0B1 JOB
//CS1 EXEC
//CS1DD1 DD
/1%

//CS1DD2 DD
//CS1DD3 DD
/1%

//BS2 EXEC
//BS2DD1 DD
//BS2DD2 DD
/1%

//AS2 EXEC
//AS2DD1 DD
//AS2DD2 DD
//STEP2 EXEC

Example 2

5-12 0S/390 V2R10.0 MVS JCL Reference

PGM=CCC
DSNAME=X.Y.Z,DISP=SHR

SYSOUT=A
SYSOUT=A

PGM=BBB
DSNAME=E,DISP=SHR
DSNAME=G,DISP=SHR

PGM=AAA
DSNAME=E,DISP=SHR
DSNAME=G,DISP=SHR
PGM=TEFBR14

System Symbols and JCL Symbols

The following example shows nested procedures and invalid overrides of DD
statement parameters that result in JCL errors. The example refers to the rules that

appear in fModifying Nested Procedures” on page 5-11]

Procedure C:
//C
//CS1
//CS1DD1
//CS1DD2
//

Procedure B:
//B
//BS1

PROC
EXEC
DD
DD
PEND

PROC
EXEC

//CS1.CS1DD1 DD
//CS1.CS1DD3 DD

//BS2
//BS2DD1
/1

Procedure A:
//A
//AS1

EXEC
DD
PEND

PROC
EXEC

//BS1.CS1.CS1DD1

/1%
/1%
/1%

//BS1.CS1.CS1DD3

/1%
/1%
/1%

//BS1.BS1DD1 DD

/1*

/1%
//AS2
//AS2DD1
//

Job Stream:
//J0B1
//STEP1

EXEC
DD
PEND

JOB
EXEC

PGM=CCC

DSN=A.B.C,DISP=SHR

SYSOUT=A

PROC=C
DSNAME=X.Y.Z
SYSOUT=A

PGM=BBB

DSN=E,DISP=SHR

PROC=B
DD DSN=X.Y.Z

DD SYSOUT=A

DSN=G,DISP=SHR

PGM=AAA
DSN=E,DISP=SHR

PROC=A

//AS1.BS1.CS1.CS1DD1 DD DSN=X

/1%
e
//STEP2

EXEC

PGM=IEFBR14

This statement is an invalid
override of procedure B, step BS1,
DD CS1.CS1DD1 (rules 4 and 5)

This statement is an invalid
override of procedure B, step BS1,
DD CS1.CS1DD3 (rules 4 and 5)

This statement is an invalid
addition to procedure B, step BS1
(rule 3)

This statement is an invalid
override of procedure A, step ASI,
DD BS1.CS1.CS1DD1 (rules 3 and 5)

Using System Symbols and JCL Symbols

System symbols and JCL symbols are character strings that represent variable
information in JCL. They allow you to modify JCL statements in a job easily. A
symbol-defining string is limited to eight characters, not including an identifying

ampersand.

This section:

e Describes system symbols and JCL symbols and the differences between them

e Explains how to define JCL symbols

Chapter 5. Procedures and Symbols 5-13

System Symbols and JCL Symbols

e Shows how to code system symbols and JCL symbols.

What are System Symbols?
System symbols represent values that are unique to each system. A system
replaces those symbols with its own values when it processes started task JCL
(jobs and procedures read from a procedure library) and TSO logons. (A started
task is a task resulting from JCL that is processed immediately as a result of a
START command. For additional information about started tasks, see[Chapter 7]
[‘Started Tasks” on page 7-1})

Rules for governing system symbol use are:

* You can use system symbols in started task JCL (for both jobs and procedures)
and in TSO logon procedures.

* Within started task JCL you can use system symbols wherever you use JCL
symbols (described under [‘What are JCL Symbols?” on page 5-15).

* You cannot use system symbols, except for &SYSUID, in batch JCL.

The difference between system symbols and JCL symbols is:

e Substitution texts for system symbols are either fixed for the life of an IPL
(static system symbols) or determined by the system (dynamic system
symbols).

e Substitution texts for JCL symbols can be controlled through input job stream
modifications to their definitions.

Before you use system symbols in JCL, see|0S/390 MVS Initialization and Tuning
for a complete list of system symbols and for details about how they
work. Then read the rest of this section for specific information about using system
symbols in started task JCL.

Displaying Static System Symbols

If you are authorized to do so, you can enter the DISPLAY SYMBOLS command to
display the static system symbols and associated substitution texts that are in effect
for a member. The output from DISPLAY SYMBOLS shows you the system
symbols that you can specify. See the description of DISPLAY SYMBOLS in
[©0S/390 MVS System Commandsd for the command syntax.

Using System Symbols in Started Task JCL

The general rules and recommendations for using system symbols (which are
described in [0S/390 MVS Initialization and Tuning Reference) apply to started task
JCL. The following are exceptions to those general rules and recommendations:

e Normally, you can specify an optional period at the end of system symbols. In
started task JCL, you must follow the rules for JCL symbols when placing a
period at the end of system symbols. See [‘Using Symbols Before Fixed Code’|

for details.

e Although dynamic system symbols are supported in started task JCL, IBM does
not recommend that you code them in started task JCL. The system substitutes
text for dynamic system symbols at conversion time, which means that the
system could assign different substitution texts to the same dynamic system
symbol within the same job.

5-14 0S/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

For example, the resolved substitution text for the &JOBNAME dynamic system
symbol is the name of the job assigned to the address space in which the JCL
is converted, not the name of the JCL job being processed.

For further information about specifying system symbols in started task JCL,
including examples, see [‘Using Symbols in Started Task JCL” on page 7-8

What are JCL Symbols?

JCL symbols differ from system symbols in that you must define them in started
task JCL before you can use them in that JCL. The JCL symbols that you define
are valid only for the current job. Conversely, there is no need to define system

symbols; they are either defined to MVS or defined by your installation, and you
can use them in any set of started task JCL.

The rules for coding JCL symbols are the same as for coding system symbols.
You can code system symbols anywhere in started task JCL that you code JCL
symbols.

This section explains how to define, nullify, and use JCL symbols in JCL.

Defining and Nullifying JCL Symbols
When you code JCL symbols, you must define or nullify them in your JCL each
time a job runs; otherwise, the system does not substitute text for JCL symbols.

The maximum length of any substitution text that you can assign to a JCL symbol
is 255 characters.

To define or nullify a JCL symbol, code the substitution text on one or more of the
following:

1. The EXEC statement that calls procedures.

Use the EXEC statement to define substitution texts on statements in the called
procedures. The substitution texts you assign override the default substitution
texts assigned on the PROC statement. For example:

//STEP1 EXEC PROC=SEARCH,PARM1='MYDS1.PGM'

The system uses a JCL symbol defined on the EXEC statement for any
procedures that it invokes. A JCL symbol defined on an EXEC statement is not
in effect for subsequent job steps in the same level of procedure nesting. See
[‘Using Symbols in Nested Procedures” on page 5-28| for more information.

If you specify duplicate JCL symbols on an EXEC statement, the system uses
the first substitution text as the default.

2. The PROC statement that begins a procedure.

The PROC statement must begin in-stream procedures and can begin
cataloged procedures. Use the PROC statement to define default substitution
texts for JCL symbols in the procedure (you can override the defaults on the
EXEC statement). If you do not define or nullify the substitution text for a JCL
symbol on the EXEC statement, the system uses the default substitution text.
For example:

//PROC1 PROC PARM2=0LD,PARM3=111222

If you specify duplicate JCL symbols on a PROC statement, the system uses
the first substitution text as the default.

Chapter 5. Procedures and Symbols 5-15

System Symbols and JCL Symbols

Assign only one substitution text to each JCL symbol used in a procedure.
3. The SET statement that defines and nullifies JCL symbols.

Code the SET statement in the JCL before the first use of the JCL symbol.
Use the SET statement to define JCL symbols that are used on:

e JCL statements in the JCL stream

e Statements in a procedure (when the EXEC statement that calls the
procedure and the PROC statement for the procedure do not also define
JCL symbols).

For example:
//LEVELL SET PARM2=NEW,PARM3=DELETE

If you define duplicate JCL symbols on a SET statement, the system assigns
the last substitution text to the JCL symbol.

Note: The substitution text specified on the SET statement is assigned to the
JCL symbol regardless of the logic of the construct. This is because the
SET statement is not executed conditionally (such as in the THEN and
ELSE clauses of an IF/THEN/ELSE/ENDIF statement construct).

If the SET statement defines a value for a JCL symbol but that symbol is not coded
in the JCL, there is no JCL error. Otherwise:
e All JCL symbols for which values are defined must be coded in the JCL.

e All JCL symbols coded in the JCL must have defined values.
Syntax of JCL Symbol Definitions

To define a substitution text to a JCL symbol, code:

JCL_symbol name=substitution_ text
Rules for Defining JCL Symbols

» Define a substitution text that is 1-255 characters long.

e Enclose within apostrophes substitution texts that do not fit on a single line.
Continue values that do not fit on a single line as described in [‘Continuing JCL|
|[Statements that Contain Symbols” on page 5-22|

* Do not specify the ampersand that identifies the JCL symbol in the procedure.

e Define JCL symbols on EXEC, PROC, or SET statements, as described in
[Defining and Nullifying JCL Symbols” on page 5-15] For example, if the JCL
symbol &NUMBER appears on one or more DD statements in a procedure, and
you want to substitute the text 3380 for KNUMBER, code one or more of the
following:

//SET1 ~ SET NUMBER=3380

//STEP1 EXEC PROC=PROC1,NUMBER=3380

//PROC1 PROC NUMBER=3380

e Do not specify JCL symbols within other JCL symbols. The results can be
unpredictable, especially if the imbedded JCL symbol is not previously defined.

Defining Names for JCL Symbols

5-16 05/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

IBM recommends that your installation define standard names for frequently used
JCL symbols and enforce the use of those names. For example, if your installation
frequently assigns department numbers in procedures, define the &DEPT JCL
symbol and use it consistently. If your installation plans to provide a standard set of
JCL symbols, ensure that all system and application programmers know about
those JCL symbols.

You can define names for JCL symbols that are the same as system symbol
names. When a JCL symbol has the same name as a system symbol, the
substitution text for the JCL symbol overrides the substitution text for the
system symbol. For example, if JCL defines a symbol with the name &SYSNAME,
which is also the name of a system symbol, the system uses the substitution text
that is defined in the JCL.

Defining Default Substitution Texts to JCL Symbols

The substitution texts that you define to JCL symbols on the PROC statement
serve as defaults. You should assign default values to all JCL symbols in a
procedure. The system uses the default values on the PROC statement when no
calling EXEC statement or SET statement overrides them.

Using Special Characters in Substitution Texts

If a substitution text contains certain special characters, enclose the substitution
text in apostrophes (for example, LOC='0O"''HARE"). The enclosing apostrophes
are not considered to be part of the substitution text. See |Figure 4-3 on page 4-3
for a list of special characters.

If the substitution text contains multiple ampersands and is not enclosed in
apostrophes, the system treats each pair of ampersands as a single character.

If the special characters include apostrophes, code each apostrophe as two
consecutive apostrophes. You must code four consecutive apostrophes in
substitution texts that are to be substituted into a parameter that is enclosed in
apostrophes. For example:

// SET LOC='0"'""'"HARE'
//S1 EXEC PGM=IEFBR14,PARM='&LOC'

produces the following equivalent JCL, which is processed correctly:
//S1 EXEC PGM=IEFBR14,PARM='0"''HARE'

However, if you code the following:

/] SET LOC='0"'"HARE'

//S1 EXEC PGM=IEFBR14,PARM='&LOC'
The equivalent JCL is:

//S1 EXEC PGM=IEFBR14,PARM='0'HARE'

The system fails this statement because the apostrophes resulting from the
substitution are unbalanced.

If the substitution text begins and ends with matched parentheses, do not enclose

the value in apostrophes. The parentheses are considered part of the substitution
text. For example:

Chapter 5. Procedures and Symbols 9-17

System Symbols and JCL Symbols

//TPROC PROC DISP=(NEW,PASS)

If the substitution text within the parentheses contains apostrophes, the
apostrophes are considered part of the substitution text. The system does not
remove them.

Syntax for Nullifying JCL Symbols

To nullify a JCL symbol, code:
JCL_symbol_name=
¢ Do not code the ampersand that identifies the JCL symbol in the procedure.
* Do not code a substitution text after the equal sign.
e Do not code literal blanks (for example, VALUE=").
For example, if the JCL symbol &NUMBER appears in one or more DD statements
in a procedure, code one or more of the following to nullify UNIT=&NUMBER:
//SET2 SET NUMBER=

//CALLER EXEC PROC=ABC,NUMBER=,ACCT=DID58
//ABC PROC NUMBER=,L0C=POK

When nullifying JCL symbols, keep the following in mind:

e When you nullify a JCL symbol, delimiters, such as leading or trailing commas,
are not nullified. In some cases, the remaining comma is required; in others it
causes a syntax error.

e Do not nullify JCL symbols that appear on JCL keywords that do not accept
NULL values. The syntax descriptions of the individual keywords specify
whether the keywords allow NULL values.

 If you use an EXEC statement to nullify a JCL symbol, and a PROC statement
specifies a default substitution text for the JCL symbol, the JCL symbol is
nullified.

The following sections explain special considerations to make when JCL symbols
are positional and not positional.

When a JCL Symbol is Positional

When a JCL symbol is a positional parameter, and another parameter follows it,
code a comma to omit the positional parameter. Code commas both before and
after the JCL symbol; the required commas remain after the JCL symbol is nullified.
For example, &NUMBER for the unit count:

UNIT=(3350,&NUMBER,DEFER)

When &NUMBER is nullified, the parameter correctly becomes:
UNIT=(3350,,DEFER)

When a JCL Symbol is Not Positional

When a JCL symbol is not a positional parameter, do not code a comma to omit
the parameter. Do not code a comma before the JCL symbol; no commas remain

5-18 05/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

after the JCL symbol is nullified. For example, serial numbers in the VOLUME=SER
parameter:

VOLUME=SER=(&FIRST&SECOND)

If either of the JCL symbols is nullified, a leading or trailing comma does not
remain. If you nullify &FIRST and assign 222222 for &SECOND, the parameter
correctly becomes:

VOLUME=SER=(222222)

If you nullify &SECOND and define 111111 to &FIRST, the parameter correctly
becomes:

VOLUME=SER=(111111)

Code a comma when it is required in a substitution text. Enclose the comma in
apostrophes (because it is a special character). For example:

//CALLER EXEC PROC=ABC,FIRST=111111,SECOND="',222222"

Coding Symbols in JCL

JCL symbols and system symbols can represent parameters, subparameters, or
values in procedures or in the parameter field of statements; those that vary each
time a job runs are good candidates to be coded as symbols.

You can code JCL symbols in:

e JCL statements in the input job stream, submitted either in batch mode or from
a TSO session (but not in the job stream read in in response to a START
command)

e Statements in cataloged or in-stream procedures (which do not include started
task JCL)

» DD statements that are added to a procedure (something that is possible, but
not practical for a started task procedure).

You may code system symbols only in started task JCL (jobs and procedures),
which can be read only from a procedure library. Therefore, you can code system
symbols only in statements in cataloged procedures.

For example, if the data set name on a DD statement in an INCLUDE group can
vary each time the INCLUDE group is imbedded in the JCL, you can code the
DSNAME parameter as a system symbol on the DD statement:

DSNAME=&DAY

If a job step is charged to different account numbers each time the procedure is
executed, code the ACCT parameter on the EXEC statement as one or more
system symbols or JCL symbols:

ACCT=&ALLNOS
ACCT=&FIRST&SECOND&THIRD

Chapter 5. Procedures and Symbols 5-19

System Symbols and JCL Symbols

— References
* For information about using symbols in nested procedures, see
[Symbols in Nested Procedures” on page 5-28|

¢ For information about using symbols in started task JCL, see
|[Symbols in Started Task JCL” on page 7-8

Rules for Coding Symbols in JCL

Follow these rules when coding symbols in JCL:

1. Do not code EXEC statement parameter and subparameter keywords as
names for JCL symbols.

Example: Do not code ®ION=200K or REGION=®ION; correctly code
REGION=&SIZE.

2. Do not code DD or JOB statement keywords as JCL symbols in procedures or
jobs that are started by a START command from the operator console. This
rule includes the following obsolete keywords:

« AFF
« SEP

* SPLIT

« SUBALLOC

This rule also includes DCB subparameters. For example, do not use the
following DCB subparameters as symbol values:

 BFALN
 LRECL

For a complete list of DCB subparameters, see [‘{DCB Subparameters” on|
page 12-55

3. When coding a JCL symbol that has the same name as a system symbol, keep
in mind that the substitution text for the JCL symbol overrides the substitution
text for the system symbol with the same name.

4. Do not use symbols to change the identifier field, name field, or operation field
of a JCL statement.

5. Do not specify symbols in records in an in-stream data set defined by the DD *
or DATA parameter. The system does not substitute text for symbols in SYSIN
data.

In addition to the preceding rules for coding symbols in JCL, you also need the
general rules for coding system symbols. See the section on coding system

symbols in|0S/390 MVS Initialization and Tuning Referencel

Note: JCL does not support substringing of system symbols or JCL symbols.
Therefore, ignore the section on substringing symbols in the general rules
for coding symbols in [0S/390 MVS Initialization and Tuning Reference]

5-20 05/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

Determining Equivalent JCL

When you submit JCL that specifies symbols, the system responds as if you had
coded the equivalent JCL (without symbols) produced by the following sequence of
operations:

1. Determine the substitution texts. The system:

* Does not consider apostrophes that enclose symbols as part of their
substitution texts.

e Considers parentheses that enclose symbols as part of their substitution
texts.

e Compresses two-to-one the double apostrophes within symbols.

e Compresses two-to-one the double ampersands in symbols that are not
enclosed in apostrophes.

e Does not compress double ampersands within symbols that are enclosed in
apostrophes.

2. Substitute all symbols.

* Resolution of all symbols might determine the processing of subsequent
statements. For example, a JCLLIB or INCLUDE statement might contain
symbols that determine which statements are used in the job.

e Symbols on JCL records are treated as if they were resolved
simultaneously.

The following example shows a procedure that defines JCL symbols:
//EXAMPLE ~ PROC SYM1='What''''s up, Doc?',SYM2=(DEF),SYM3=8&&&TEMP1,

// SYM4="&&TEMP2"' ,SYM5=&&TEMP3, TEMP3=TEMPNAME,

// SYM6=&TEMP3

//51 EXEC PGM=WTO,PARM="'&SYM1',ACCT=&SYM2

//DD1 DD DSN=&SYM3,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD2 DD DSN=&SYM4,UNIT=SYSDA,SPACE=(TRK, (1,1))
//DD3 DD DSN=&SYM5,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD4 DD DSN=&SYM6,UNIT=SYSDA,SPACE=(TRK, (1,1))
/] PEND

The PROC statement assigns the following substitution texts to the JCL symbols:

SyM1 What''s up, Doc?
SYM2 (DEF)

SYM3 &&TEMP1

SYM4 &&TEMP2

SYM5 &TEMP3

TEMP3 TEMPNAME

SYM6 &TEMP3

The equivalent JCL produced by the substitution, when the procedure is expanded,

IS:
//51 EXEC PGM=WTO,PARM='What's up, Doc?',ACCT=(DEF)
//DD1 DD DSN=&&TEMP1,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD2 DD DSN=&&TEMP2,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD3 DD DSN=&TEMP3,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD4 DD DSN=&TEMP3,UNIT=SYSDA,SPACE=(TRK,(1,1))

Note the following in the example:

Chapter 5. Procedures and Symbols 5-21

System Symbols and JCL Symbols

e SYM1 requires four apostrophes in its original definition because it is
substituted into a parameter enclosed in apostrophes. The system compresses
the apostrophes in the symbol definition when the value of the symbol is
determined, and again when the EXEC PARM parameter is processed. The
parameter passed to the WTO program is:

What's up, Doc?

* The single ampersand produced by SYM5 in the DSN parameter of DD3 cannot
be interpreted as the start of a new JCL symbol, since substitution is performed
only once for a given statement. All symbols are treated as if they were
resolved simultaneously. If the symbol TEMP3 defined on the PROC statement
is not used elsewhere in the procedure, a JCL error results.

e The symbol TEMP3 cannot be used to assign a value for the symbol SYM6 on
the same statement. Because all symbolic parameters are resolved
simultaneously, the value assigned to SYM6 cannot depend on another symbol
defined at the same time. The system assigns the value &TEMP3, not
&&TEMP2, to SYM6. Again, if the symbol TEMP3 is not used elsewhere in the
procedure, a JCL error will result.

Continuing JCL Statements that Contain Symbols
The system evaluates continuations of JCL statements that contain symbols as
follows:

1. The system substitutes all symbols on an 80-character record.

2. The system determines if the record continues to another record. If symbolic
substitution produces a blank card image on the continuation record, the
substitution is not valid.

For example, consider the following JCL:

//SET1 SET VAL1='ABC,',VAL2=DEF,NULLSYM='
//S1 EXEC PGM=IEFBR14,PARM=&VAL1

// TIME=30

/152 EXEC PGM=IEFBR14,PARM=&VAL2
/] TIME=30

/783 EXEC PGM=IEFBR14,PARM=&VAL1
/] &NULLSYM

The JCL records that define step S1 form a valid continuation; the JCL symbol
VAL1 introduces a comma, and the continuation is correctly coded.

Steps S2 and S3 are not valid. In step S2, the first record does not end in a
comma after substitution of VAL2. In step S3, the record containing NULLSYM
evaluates to NULL record after symbolic substitution.

Coding Symbols in Comments

The system does not process symbols in comment statements or in comment fields
of JCL statements. Comments on JCL statements that contain symbols are
evaluated as follows:

 In the original submitted JCL, the system recognizes the beginning of the
comment field when it encounters the blank character at the end of the
parameter field. For purposes of symbolic substitution, the system disregards
text occurring after this blank.

5-22 0S/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

o After performing symbolic substitution, the system re-evaluates the resulting
equivalent JCL to determine where the parameter field ends. The system
recognizes the beginning of the comment field in the substituted JCL when it
encounters the blank character at the end of the (potentially modified)
parameter field. The system disregards text occurring after this blank in
subsequent processing.

Example:

// SET QUOTE='""'
//S1 EXEC PGM=IEFBR14,PARM="E.ABC DEF"E
//DD1 DD DUMMY

The equivalent JCL produced by substitution is

//S1 EXEC PGM=IEFBR14,PARM='ABC DEF"E
//DD1 DD DUMMY

DEF"E is considered a comment because it follows the blank that ends the
parameter field, so the second instance of "E will not be replaced during
symbolic substitution. Because the first &KQUOTE symbol resolves to a single
quotation mark, the system expects to either find another single quotation at the
end of a subparameter list, or find a continuation to the next line. The EXEC
statement receives an error message indicating that the system did not receive an
expected continuation.

Example:

// SET CONT=' ',T='(30,0)'
//S1 EXEC PGM=IEFBR14&CONTPARM='ABC DEF',TIME=&T

The equivalent JCL is:
//S1 EXEC PGM=IEFBR14 PARM='ABC DEF',TIME=(30,0)

The text (30,0) is substituted for the symbol &T. However, because substitution
introduced a blank character after the program name parameter, all text following
the blank is considered to be a comment. Thus the system does not process the
PARM and TIME parameters.

Coding Symbols in Apostrophes
You can code symbols in apostrophes on the following keywords:

e The DD statement AMP parameter

e The DD statement PATH parameter

e The DD statement SUBSYS parameter
e The EXEC statement ACCT parameter
e The EXEC statement PARM parameter.

When you specify these parameters, the system regards a string beginning with an
ampersand (&) inside the apostrophes as a symbol when the following conditions
are true:

e The character following the ampersand is not another ampersand.

e The characters following the ampersand are ended by a character that is not
alphabetic, numeric, or national. The ending character must be not more than 9
characters after the ampersand. The symbol cannot be more than 8 characters
long.

Chapter 5. Procedures and Symbols ~ 5-23

System Symbols and JCL Symbols

e The string of characters delimited by the ampersand and the ending character
is:

— Defined as a symbol on a PROC, EXEC, or SET statement
— A system symbol.

The system treats a string beginning with an ampersand but not meeting these
criteria as a literal sequence of characters. Thus the system does not substitute text
for symbols and does not issue error messages.

In the following example, &XXX is a JCL symbol that is defined in the STEP2
EXEC statement. &INPUT is not a symbol because it is not defined.

//TPROC PROC

//STEP1 EXEC PGM=IEFBR14,PARM='&INPUT&XXX'
// PEND

//STEP2 EXEC TPROC,XXX=VALUE

The ending character for &XXX is the apostrophe.

The result of the example is:
//EXEC PGM=IEFBR14,PARM="'&INPUTVALUE'

On parameters that are not in the list, the system correctly resolves a symbol that
is enclosed in apostrophes when the symbol is immediately preceded by a symbol
that is not enclosed in apostrophes. For example, both A and B are substituted
correctly in:

//DD1 DD &A'&B',DISP=0LD

A symbol within apostrophes cannot be broken at column 71 and continued to the
next line. For example, the following JCL statement is incorrect:

// SET SYMBOL=VALUE
//S1 EXEC PGM=IEFBR14,TIME=(30,0),REGION=4K,PARM="'Print &SYMB
/1 oL'

The JCL symbol SYMBOL is not substituted because it must be coded on a single
JCL record. A JCL error may result.

Using Symbols Before Fixed Code
A period is required after a symbol when the code that follows the symbol is fixed
and begins with:

» An alphanumeric or national character ($, #, @)
e A period.

The system recognizes the period as a delimiter. The period does not appear after
you assign a substitution text to a symbol or nullify a symbol.

For example, if the first part of a data set name varies and the last does not, as in
MONDATA, TUESDATA, and so forth, code:

DSNAME=&DAY .DATA
Code two consecutive periods (..) if a period follows a symbol. For example, code

&DEPT..POK when the desired value is D58.POK and DEPT=D58 is the value
assignment.

5-24 0S/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

Using Symbols as Positional Parameters
When a symbol is a positional parameter followed by other parameters in the
statement, follow the symbol with a period instead of a comma. For example:

//DS1 DD &POSPARMDSNAME=ATLAS,DISP=0LD

If &POSPARM is nullified, the statement appears as:
//DS1 DD DSNAME=ATLAS,DISP=0LD

When assigning a substitution text to &POSPARM, include the comma:
POSPARM="'DUMMY, '

If &POSPARM is not nullified, the statement appears as:
//DS1 DD DUMMY.DSNAME=ATLAS,DISP=0LD

Using Two or More Symbols in Succession
Code two or more symbols in succession without including a comma. For example:

PARM=&DECK&CODE

If the substitution text is to contain a comma, include the comma in the substitution
text.

Using Multiple Symbols
The same symbol can appear more than once in a job. You can assign different
substitution texts to the same symbol on different statements.

The same symbol can appear more than once in a procedure, as long as its
substitution text is the same throughout the procedure. For example, &DEPT can
appear several times in a procedure, if the department number is always to be the
same.

Using the SYSUID System Symbol

As long as you observe the rules listed in the earlier topic "Rules for Coding
Symbols in JCL," you may code the SYSUID system symbol anywhere in your JCL
where you would code a user ID except on the keywords and statements listed in
the topic fRestrictions on Coding SYSUID” on page 5-26] The system replaces
&SYSUID with the user ID under whose authority the job will run, which is normally
one of the following:

e The USER parameter from the JOB statement, if specified, or
¢ The user ID from which the job was submitted.

Note: If userid propagation does not occur, (for example a security product is not
active or the submitting userid is not allowed to propagate), SYSUID will be
null. A security product is considered "not active" in OS/390 if it has been
disabled. If RACF is running in a fail soft mode, the security product is
considered "active."

Note: If RACF is active and the job is running with a user ID not defined to RACF,
the system provides substitute characters for &SYSUID and may fail the job
because of this JCL error. The same results may occur if &SYSUID is not
resolved to a valid user when RACF is not active.

You can, for example, use &SYSUID as a generic qualifier in a data set name
specified in a transaction program profile that will be invoked by a transaction

Chapter 5. Procedures and Symbols ~ 5-25

System Symbols and JCL Symbols

program. Code SYSUID on the DSNAME parameter as the high-level qualifier of
the data set name:

//DD1 DD DSNAME=&SYSUID.PROFILE,DISP=(NEW,KEEP)

The system replaces the symbol with the userid of the transaction program invoker.
If userid ROGERS invokes the transaction program, the system will create the data
set name ROGERS.PROFILE.

Restrictions on Coding SYSUID
Do not code &SYSUID on the following keywords and statements:

e Job statement USER, GROUP, PASSWORD, and SECLABEL parameters
when a security product like RACF is active.

e The XMIT JCL statement; coding &SYSUID on XMIT causes a JCL error and
the job is flushed.

e JES2 or JES3 control statements.

e Job statement accounting information and programmer name fields.

In an APPC scheduling environment:

e Avoid coding &SYSUID on the DD statement SUBSYS parameter; symbol
substitution is unpredictable on SUBSYS.

e Avoid coding &SYSUID on the JOB statement NOTIFY parameter; if the user
ID specified through the Allocate service is longer than 7 characters, the
Allocate request will fail.

Avoid using &SYSUID as an unqualified data set name. Depending on the other
statements in the transaction program profile, the system might interpret the data
set name as a temporary data set name.

Examples of Defining and Coding Symbols in JCL
Example 1
//J0BA JOB

//INSTREAM PROC LOC=POK
//PSTEP EXEC PGM=WRITER

//DSA DD SYSOUT=A,DEST=&LOC

// PEND

//CALLER ~ EXEC PROC=INSTREAM,LOC=NYC
/1

In this example of an in-stream procedure, the &LOC symbol has a default value of
POK on the PROC statement; then it is assigned an execution value of NYC on the
calling EXEC statement.

Example 2

5-26 05/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

//J0BB JOB
//INSTREAM PROC LOC=POK,NUMBER=3350
//PSTEP EXEC ...

//PIN DD DSNAME=REPORT,DISP=(0OLD,KEEP),UNIT=&NUMBER
//POUT DD SYSOUT=A,DEST=&LOC
/1l PEND

//CALLER EXEC PROC=INSTREAM,NUMBER=,LOC=STL
//PSTEP.INDATA DD =*

kdata)
/% '

This code nullifies the &NUMBER JCL symbol. The calling EXEC statement
assignment of STL for the &LOC symbol overrides the PROC statement
assignment of POK.

Example 3

This example illustrates execution of an in-stream procedure to test symbols before
placing the procedure in a procedure library. The in-stream procedure named
TESTPROC is:

//TESTPROC PROC A=IMB406,B=ABLE,C=3330,D=WXYZ1,

/l E=0LD,F=TRK,G="'10,10,1"

//STEP EXEC PGM=&A

//DD1 DD DSNAME=&B,UNIT=&C,VOLUME=SER=&D,DISP=&E,
// SPACE=(&F, (8G))

/l PEND

To execute this in-stream procedure and override &A with IEFBR14, &B with
BAKER, and &E with (NEW, KEEP) but leave the other parameters the same, call
the in-stream procedure with:

//CALLER1 EXEC PROC=TESTPROC,A=IEFBR14,B=BAKER,E=(NEW,KEEP)

Note that the value (NEW,KEEP) does not require apostrophes because it contains
a matched pair of parentheses. See|Figure 4-4 on page 4-4|for more information.

After symbolic substitution, the statements are:

//STEP EXEC PGM=IEFBR14
//DD1 DD DSNAME=BAKER,UNIT=3330,VOLUME=SER=WXYZI,
/1l DISP=(NEW,KEEP),SPACE=(TRK, (10,10,1))

Example 4

To execute the in-stream procedure in the previous example and change DD1 to
resemble a temporary scratch space, code the following statement:

//CALLER2 EXEC PROC=TESTPROC,A=IEFBR14,B=,C=3350,D=,E=

After symbolic substitution, the statements are:

//STEP EXEC PGM=IEFBR14
//DD1 DD DSNAME=,UNIT=3350,VOLUME=SER=,DISP=,SPACE=(TRK, (10,10,1))

Chapter 5. Procedures and Symbols ~ 5-27

System Symbols and JCL Symbols

Using Symbols in Nested Procedures

The general rules described in [‘Using System Symbols and JCL Symbols” on|

also apply to symbols in nested procedures, along with the following
rules:

1. Within a nested procedure, assign only one substitution text per symbol. You
can use the same symbol in other nested procedures and assign it different
values.

2. If you assign or nullify the value for a symbol on an EXEC statement that calls
a nested procedure, the substitution text that you specify on the EXEC
statement is used in the procedure. The EXEC statement overrides any default
value you specify on the PROC statement of the nested procedure.

3. When the EXEC statement that calls the nested procedure does not assign a
substitution text to the symbol, the system uses the default substitution text
specified on a PROC statement.

One way to provide an override value for a symbolic in a nested procedure is
to design the procedure so that it requires no assignment of default symbolic
parameter values. If the PROC statement of the inner procedure contains no
default value, the system uses the value specified on the EXEC statement of
the outer procedure. For example:

//TESTICL PROC

//STEP1 EXEC TESTJCL1

// PEND

//TESTJCL1 PROC

//STEP2 EXEC PGM=IEFBR14,PARM=&PVAL
//SYSUDUMP DD SYSOUT=A

// PEND

//RUNIT EXEC TESTJCL,PVAL=EXECO

4. If you assign or nullify a substitution text for a symbol on a SET statement, the
substitution text that you specify on the SET statement is used in all
subsequent statements, procedures, and nested procedures. However, if the
calling EXEC statement or the PROC statement of the procedure assigns or
nullifies the symbol, it only applies to subsequent statements within that PROC
and subsequent nested procedures within that procedure.

5. If you do not assign or nullify a value for a JCL symbol in a nested procedure,
the value used for the JCL symbol in this procedure is obtained from the
procedure in which this procedure is nested.

6. If a JCL symbol is not assigned a substitution text or is not nullified, it is an
undefined JCL symbol which might cause errors in the JCL.

Figure 5-1 shows rules 2 - 6 in a summary table, which is the order in which the
value for a symbol is resolved.

5-28 05/390 V2R10.0 MVS JCL Reference

System Symbols and JCL Symbols

Figure 5-1. Summary of Rules 2 - 6 for Symbols in Nested Procedures

Where the Symbol is Defined

EXEC PROC SET Nested Value | None

Not EXEC Not PROC Not SET
Not EXEC Not PROC

Value Not EXEC
Used (Rule 2) (Rule 3) (Rule 4) (Rule 5) (Rule 6)
EXEC Value X
PROC Value X
SET Value X
Nested Value X
Undefined X

Examples of Coding Symbols in Nested Procedures

The following example defines symbols A, B, and C with multiple assignments in
nested procedures:

Current value of

symboTl:
//MYJOB JOB Level 0:
//SET1 SET A=123,B=456 A=123,B=456,C=undefined
//PROC1 PROC A=234,C=GHI
//PSTEP1 EXEC PROC=PR0OC2,A=ABC,B=DEF
//PSTEP2 EXEC PGM=IEFBR14
// PEND
//PROC2 PROC
//P2STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD
//SYSUT1 DD
//SYSUT2 DD

SYSOUT=A
DSN=&A. .&B,DISP=SHR
SYSOUT=A,DCB=LRECL=&C

// PEND
//STEP1 EXEC PROC=PROCI,A=,C=789 Level 1:

. A=,B=456,C=789
++PROC1 PROC A=234,C=GHI
++PSTEP1 EXEC PROC=PROC2,A=ABC,B=DEF Level 2:

. A=ABC,B=DEF,C=789
++PROC2 PROC
++P2STEP1 EXEC PGM=IEBGENER

++SYSPRINT DD
++SYSUT1 DD
++SYSUT2 DD

SYSOUT=A
DSN=ABC.DEF,DISP=SHR
SYSOUT=A,DCB=LRECL=789

++ PEND
++PSTEP2 EXEC PGM=IEFBR14 Level 1:
. A=,B=456,(=789
++ PEND
//BARNEY EXEC PGM=IEFBR14 Level 0:
/... A=123,B=456,C=undefined

The processing of symbols in MYJOB is:

5-29

Chapter 5. Procedures and Symbols

System Symbols and JCL Symbols

e When the SET statement SET1 is processed, symbols A and B are defined and
initialized to the values 123 and 456, respectively. (The C symbol C is not yet
defined.) The level of nesting (scoping) is 0.

e EXEC statement STEP1 references in-stream procedure PROC1. The symbols
are changed as follows: A is nullified, B remains 456 from SET statement
SET1, and C is defined and assigned the substitution text 789. The level of
nesting (scoping) is now 1.

PROC statement PROC1 defines the default values for the symbols A and C
as A=234 and C=GHI. However, these values are overridden by the values on
the EXEC statement STEP1 as: A=, and C=789.B remains 456 from SET
statement SET1. The level of nesting is still 1.

e EXEC statement PSTEP1 is processed. The substitution texts for the symbols
are updated again as: A=ABC and B=DEF. (C remains 789 from EXEC
statement STEP1.) The substitution texts are passed to procedure PROC2
referenced by EXEC statement PSTEP1. The level of nesting is now 2.

e The statements in procedure PROC2 are processed. The values used to
resolve the symbols on DD statements SYSUT1 and SYSUT2 are those from
level 2, namely A=ABC, B=DEF, C=789. The level of nesting returns to level 1.

e EXEC statement PSTEP2 in PROCH1 is processed. This statement does not
change the values of the symbols. However, because the expansion of PROC2
is complete, the values of the symbols return to the level 1 values held prior to
procedure PROC2, which are A=, B=456, and C=789. The level of nesting
returns to level 0.

e EXEC statement BARNEY is at level 0 and the substitution texts for symbols
are restored to their original values: A=123,B=456, and C=undefined. The
substitution texts, defined by SET statement SET1, are retained throughout this
level of nesting (level 0).

5-30 05/390 V2R10.0 MVS JCL Reference

Job Log

Chapter 6. Job Control Statements on the Output Listing

Use the JOB statement MSGLEVEL parameter to request that job control
statements be printed in the job log output listing. Code MSGLEVEL=(1,1) to
receive the maximum amount of information, in the following order:

» JES messages and job statistics.
¢ All job control statements in the input stream and procedures.
* Messages about job control statements.

e JES and operator messages about the job's processing: allocation of devices
and volumes, execution and termination of job steps and the job, and
disposition of data sets.

Statements in Listing

To identify the source and type of each statement, the system prints certain
characters in columns 1 and 2 or 1, 2, and 3 of the listing. These identifying
characters are explained in Figure 6-1. The listing shows all procedure statements
as they appear in the cataloged procedure; the listing does not show parameter
substitutions and overrides on the statement itself.

Symbolic Parameters

The job log listing shows the symbolic parameters in procedure statements. The
values assigned to the parameters are given in IEF653] messages. These
messages appear immediately after each statement that contains symbolic
parameters.

EXEC Overriding Parameters

A procedure EXEC statement appears in the job log listing exactly as it appears in
the procedure. Overridden parameters must be shown by the program being
executed:

» For the EXEC statement that executes the assembler program, the Diagnostic
Cross Reference and Assembler Summary produced by the assembler
program shows the overriding parameters.

» For the EXEC statement that executes the linkage editor, the linkage editor
listing shows the overriding parameters.

© Copyright IBM Corp. 1988, 2000 6-1

Job Log

Figure 6-1. Identification of Statements in Job Log
Columns 1,
2,and 3 Source and Type of Statement

Job Control Statements in the Input Stream

I JCL statement

A Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

I JES2 statement

I JES3 statement

I Certain JES3 control statements

" JCL comment statement

Cataloged Pro

cedure Statements

XX

DD statement that was not overridden and all other JCL statements, except the
JCL comment statement. Each statement appears in the listing exactly as it
appears in the procedure.

X/ DD statement that was overridden (preceded by the overriding DD statement)

XX* Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

XX* JCL comment statement

In-Stream Procedure Statements

++ DD statement that was not overridden and all other JCL statements, except the
JCL comment statement. Each statement appears in the listing exactly as it
appears in the procedure.

+/ DD statement that was overridden (preceded by the overriding DD statement)

+4* Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

+4* JCL comment statement

6-2 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

Chapter 7. Started Tasks

This chapter describes the decisions you will need to make before using started
tasks, and if you decide to use started tasks, the steps you will need to perform.

Determining Whether to Use a Started Task

When you determine where and when you want a set of JCL to run, you will
consider using batch jobs or started tasks. Batch jobs are scheduled by a job entry
subsystem (JES) and are scheduled to run based on the resources they require
and their availability, or based on controls you put on the batch system. Controlling
where and when a batch job runs is more complex than using a started task.

A started task is a set of JCL that is run immediately as the result of a START
command. Started tasks are generally used for critical applications. The advantages
to using started tasks are:

e You can control where and when your set of JCL is run. For example, you can
have the set of JCL started at each IPL of the system.

e You can specify both static system symbols and JCL symbols in the JCL.
Static system symbols and JCL symbols provide additional control over JCL
that is used on different systems. For example:

— When access to production data sets is controlled to protect critical
business data, you can specify symbols that represent test data sets. After
testing the data sets, you can change the values of the symbols to
represent production data sets without changing the source JCL.

— When you need to swap in an older level of a subsystem while diagnosing
problems with a newer level, you can change the values of symbols to
represent the older subsystem without changing the source JCL.

For more information about system symbols and JCL symbols, see [‘{Using Symbols
in Started Task JCL” on page 7-8

Note: In the past, some users set up batch jobs that controlled their programs.
Users allocated a PDS, added JOB JCL to a member of the PDS, and then
read the PDS member into an internal reader; these actions initiated a
batch job for the started task. While this method afforded some advantages,
it did not allow for symbolic support.

Determining the Source JCL for the Started Task

If you decide to use a started task, you must then determine what the source JCL
will be and where the JCL will be located. The source JCL can be a JOB (located
in a member of a data set defined in the IEFJOBS or IEFPDSI concatenation of
master JCL) or a procedure (located in a subsystem procedure library, for example,
SYS1.PROCLIB). In the latter case, the system will process only the JCL
associated with the first JOB statement in the procedure; it will flush the second
and subsequent jobs.

Note: In the past, the source JCL for started tasks was always a procedure.

© Copyright IBM Corp. 1988, 2000 7-1

Started Tasks

For information about master JCL considerations to support started tasks, see
|0S/390 MVS Initialization and Tuning Referencel

Before determining whether you will use a job or a procedure as source JCL for a
given started task, you need to understand the advantages of each. When you
have identified whether the source JCL will be a job or a procedure, determine the
system services that the started task will require (see ['Determining System|
[Services for a Started Task” on page 7-5).

In most cases, you will use a procedure unless you need greater control of your
started task. For example, EREP formats the logrec data set information; you may
not need to change the way this currently works. The best candidates for
procedures are started tasks that require minimal maintenance.

The major advantage of using a job as the source JCL for a started task is the
control provided over certain aspects of the started task. For example:

 Ability to specify accounting data
For example, to determine which resources are being used by individual users.
 Ability to pass parameters to the started task

For example, using SYSIN data, you can pass data to programs in the started
task.

e Control of output

For example, many installations purge all output from started tasks because of
the volume of output. With the output control allowed within a job, you can
specify to receive output only if something abnormal occurs with the started
task.

Started tasks are initiated by the START command which identifies the member
that contains the source JCL for the task. (See|0S/390 MVS System Commandg
for information on the START command.) The following two sections describe how
the system processes the START command (dependent on whether the source
JCL is a job or a procedure) and the JCL that results.

START Command Processing when the Member is a Procedure

During START command processing, if the member specified does not start with a
JOB statement, the system creates a JOB statement and EXEC statement that will
invoke the procedure of the same name as the member.

For example, the member INIT exists in SYS1.PROCLIB as follows:
//IEFPROC EXEC PGM=IEFIIC

JES2 automatically issues the command S INIT.INIT,,,JES2,SUB=JES2 and the
following JCL is created:

//INIT JOB MSGLEVEL=1
//INIT EXEC INIT

7-2 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

START Command Processing when the Member is a Job

If a JOB statement is the first statement in the member, the system uses the JCL
provided in the member. For example, given the following JOB statement and JCL
in the INIT member:

//INIT JOB 'accounting_info' ,MSGLEVEL=1
//JESDS OUTPUT JESDS=ALL,OUTDISP=(PURGE,WRITE)
//INIT EXEC INIT

//DD1 DD DSN=SYSTEM.ACCOUNT.DATA,DISP=SHR
/1*

JES2 automatically issues the command S INIT.INIT,,,JES2,SUB=JES2 and the
preceding JCL is invoked, starting the MVS initiator by calling the INIT procedure.
The S INIT.INIT,,,JES2,SUB=JES2 command now uses the source JCL and
invokes the same procedure.

Review Current Started Tasks
Some of your existing started tasks may offer you greater benefits if the source JCL
were a job. Review existing started tasks and identify the ones that should be a job
by comparing their needs with the support provided (for example, output or
accounting).

When you have identified that the source JCL will be a job, determine which
method you will use to convert existing procedures, and determine whether the
system services that the started task will require have changed. (See [‘Determining]
[System Services for a Started Task” on page 7-5|)

Convert Procedures to Jobs (Optional)

You may decide to convert some of your existing started task procedures to jobs.
Before doing so, you should understand how the started task JCL and processing
will change.

If the following command is issued for a started task procedure:
S DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY

and the procedure being started is:

//DUMPCHK PROC SG=ALL,JDATE=,DAY=
//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM="/&SG,&JDATE,&DAY"'
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR

//CDS DD DSN=DATAMGT.CDS,DISP=SHR

/l DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR

/1l DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//L0G DD DSN=SYS1.TSODUMP.LOG,DISP=SHR

//SYSPRINT DD SYSOUT=+

MVS creates the following JCL to invoke this procedure:

//DUMPCHK JOB MSGLEVEL=1
//STARTING EXEC DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY

To convert an existing procedure to a job, remove the PROC and PEND
statements and add a JOB statement and any other JCL you plan to use.

To invoke as existing procedure, you can choose one of the following alternatives.

Chapter 7. Started Tasks 7-3

Started Tasks

o [Alternative 1 - Add the Member and JCL to the IEFJOBS-Defined Data Set” on|
|§age 7-4

« [Alternative 2 - Add the Job JCL to the Existing Procedure’|

¢ [Alternative 3 - Add the Member and Invoke a Procedure in Another DD|

Concatenation” on page 7-5|

Note: It is important to note that if system symbols are used on the PROC
statement, they cannot be overridden by the START command system
symbols.

Alternative 1 - Add the Member and JCL to the IEFJOBS-Defined
Data Set

If you plan to define an IEFJOBS concatenation in MSTJCLxx with a data set of
SYS1.STCJOBS, create a DUMPCHK member in SYS1.STCJOBS. Place the job
in this member and add an EXEC statement that will run the existing procedure.

For example:
//DUMPCHK JOB 'accounting info' ,MSGLEVEL=(1,1)
// EXEC DUMPCHK

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:

//DUMPCHK JOB ‘'accounting_info' ,MSGLEVEL=(1,1)
// SET SG=ALL,JDATE=93119,DAY=THURSDAY
// EXEC DUMPCHK

Alternative 2 - Add the Job JCL to the Existing Procedure

If you do not plan to define an IEFJOBS concatenation in MSTJCLxx and the
procedure DUMPCHK is already defined in SYS1.PROCLIB or one of the other
data sets in the IEFPDSI concatenation of MSTJCLxx, use a JOB statement in the
DUMPCHK member that formerly contained only the procedure, along with an
EXEC statement that will run the existing procedure, and convert the existing
procedure to an in-stream procedure by adding PROC and PEND statements, if
they are not already present. For example:

//DUMPCHK JOB ‘'accounting_info' ,MSGLEVEL=(1,1)

//DUMPCHK PROC

//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM="/&SG,&JDATE, &DAY'
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR

//CDS DD DSN=DATAMGT.CDS,DISP=SHR

/l DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR

/l DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//L0G DD DSN=SYS1.TSODUMP.LOG,DISP=SHR
//SYSPRINT DD SYSOUT=*

// PEND

/l EXEC DUMPCHK

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:

7-4 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

//DUMPCHK JOB ‘'accounting_info' ,MSGLEVEL=(1,1)

// SET SG=ALL,JDATE=93119,DAY=THURSDAY

//DUMPCHK PROC

//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM="/8&SG,&JDATE, &DAY"
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR

//CDS DD DSN=DATAMGT.CDS,DISP=SHR

/l DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR

// DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//L0G DD DSN=SYS1.TSODUMP.LOG,DISP=SHR
//SYSPRINT DD SYSOUT=+

// PEND

/l EXEC DUMPCHK

Alternative 3 - Add the Member and Invoke a Procedure in
Another DD Concatenation

If you do not plan to define an IEFJOBS concatenation in MSTJCLxx and the
procedure DUMPCHK is not in any of the data sets in the IEFPDSI concatenation
of MSTJCLxx, create a member to contain the job and add that member to one of
the data sets in the IEFPDSI concatenation and place the EXEC statement that will
run the existing procedure (contained in the JES PROCLIB) in the JCL. The
existing procedure will be invoked just as it was in the past. For example:

//DUMPCHK JOB ‘'accounting_info' ,MSGLEVEL=(1,1)
// EXEC DUMPCHK

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:

//DUMPCHK JOB ‘'accounting info' ,MSGLEVEL=(1,1)

// SET SG=ALL,JDATE=93119,DAY=THURSDAY
// EXEC DUMPCHK

Determining System Services for a Started Task

Before you begin to code the JCL for a started task, you should determine under
which subsystem the JCL will run, and the changes the master JCL will require.

Deciding Under Which Subsystem a Started Task Should Run

To decide under which subsystem your started task should run, determine what
services the task requires and what support the primary (job entry) subsystem, the
master subsystem, and other subsystems provide.

Inform the system programmer responsible for the master JCL of your decision.
Then code the name of the subsystem on the START command's SUB= keyword.

Without a SUB= keyword on the START command, the operating system will create
the started task under the primary job entry subsystem (JES2 or JES3) unless the
task itself is a subsystem, that is, it is either defined

¢ in the member IEFSSNxx of SYS1.PARMLIB, or
e dynamically by the SETSSI command or IEFSSI macro.

(A subsystem, unless requested to start under the primary JES subsystem by
setting flag SSCTUPSS in the SSCVT, starts under the master subsystem, MSTR.)

Chapter 7. Started Tasks 7-5

Started Tasks

A started task, regardless of the subsystem under which it runs, is
demand-selected and runs in its own address space. Several considerations apply:

e The task can be a multi-step procedure or a job.

e It may not use operating system restart facilities. (The system does not support
step restarts or checkpoint restarts for started tasks.)

e The JCL for the started task may contain the following statements:

- COMMAND
— ELSE

— ENDIF

— IF/THEN

— INCLUDE
- SET

¢ The system defines the system symbolic parameter &SYSUID. If the member
name that is the target of the START command matches an entry in the started
procedures table, &SYSUID contains the corresponding userid from that table.
Otherwise, &SYSUID contains a null string. For information on the started
procedures table, see |0S/390 SecureWay Security Server RACF System|
[Programmer's Guide.

Running a Started Task Under a Job Entry Subsystem

These additional considerations apply to a started task running under a job entry
subsystem (JES):

e The JCL for the started task may contain commands and JES2 JECL
statements. It may not use JES3 JECL.

e The JCL may contain a JCLLIB statement, and the started task may have a
SYSIN data set, but these are permitted only if the JCL being started is a
complete job. For example, the following will work:

//STC JOB

// JCLLIB ORDER=...

//STEP1 EXEC PGM=...

//MYDATA DD *

These are the times that try men's souls.
/*

//

e The started task may have SYSOUT data sets.

e JES exits get control (to validate and modify the task).

Running a Started Task Under the Master Subsystem

These additional considerations apply to a started task that runs under the master
subsystem:

* Any started task that can operate under the master subsystem can also run
under the primary JES subsystem.

e A started task running under the master subsystem (SUB=MSTR) may choose
to use JES services. To do so, the task must issue a Request Job ID call to the
JES. (See [05/390 MVS Using the Subsystem Interfacd for additional
information about the Request Job ID call.)

7-6 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

e The started task may include JES statements and commands with the //
COMMAND statement. Note, however, that if JES is not running, the system
may queue or purge these statements.

e The JCL may not include a JCLLIB statement.

e The JCL may include PROC and PEND statements if the JCL is a procedure,
but not if it is a job.

e The started task may not have SYSIN data sets.

e The system will initially allocate only data sets that are cataloged in the master
catalog, an integrated catalog facility (ICF) catalog, or in a private catalog.

* You may dynamically allocate data sets that are not cataloged in the master
catalog to a task running under the master subsystem during execution.

e You may dynamically allocate SYSOUT data sets after successfully completing
a Request Job ID SSI call.

e JES exits do not get control during startup processing of a started task. If,
however, the started task issues a Request Job ID SSI call, JES exits will get
control for the minimal JCL used to construct the JES job structure.

e SMF exits, such as IEFUJV, get control with the subsystem shown as SYS.
* SRM determines performance characteristics based on the master subsystem.

e You may not specify JES3-managed devices in the procedure; JES3 cannot
manage devices for tasks that run under the master subsystem.

¢ You must code a TIME= value on the EXEC statement of the procedure (such
as TIME=NOLIMIT), or else specify the program as a system task in the
program properties table (PPT). Otherwise, the task will end abnormally with a
time-out condition.

Running a Started Task That Uses ICF Catalogs
An integrated catalog facility (ICF) catalog describes data set attributes and
indicates the volumes on which a data set is located. ICF catalogs are allocated by
the catalog address space (CAS), a system address space for the DFSMS/MVS
DFSMSdfp catalog function.

For a started task to use data sets cataloged in an ICF user catalog, either of the
following must occur:

e You start the started task after the CAS is fully active, or

* The started task is one of the following:

— Not a subsystem
— A subsystem that is used to start another task
— A subsystem that is started under the primary JES subsystem

If neither of those conditions is met and the task attempts to obtain catalog

information, the system ends the started task abnormally. To avoid this potential
abend, either specify unit and volume information in your JCL for each data set
cataloged in an ICF user catalog, or catalog the data sets in the master catalog.

Chapter 7. Started Tasks 7-7

Started Tasks

Set Up the Master JCL

Before adding or changing a started task, contact the system programmer who
controls the master JCL. With that person, identify and define the data sets to
which you will need access, and what you intend to change. For information on

setting up the master JCL, the system programmer can see [0S/390 MVS
[Initialization and Tuning Reference}

Coding the JCL

When you have determined what the started task source JCL will be, where it will
run, and have set up the necessary support for it, you are ready to code the JCL
for the started task.
This section explains how to:

¢ Code a JOB statement for a started task

e Use symbols in started task JCL.

Coding the JOB Statement for the Started Task

If you choose to code a started task with a JOB statement, the rules are slightly
different than the rules for other jobs:

e The statement must start with //
e The jobname is 1 through 8 non-blank characters

¢ The jobname does not have to follow conventional JCL jobname rules (in terms
of valid characters); however, if the jobname is not valid, it must be overridden
by the JOBNAME parameter of the START command. If a name is not valid
and is not overridden, a JCL error results.

e The jobname must be followed by at least 1 blank.
e JOB must follow the blank(s) after the jobname.

e JOB must be followed by at least 1 blank.

Using Symbols in Started Task JCL

You can code both system symbols and JCL symbols in started task JCL for both
jobs and procedures. This section provides examples of how to code system
symbols and JCL symbols in started task JCL. For details on how to code system
symbols in JCL, and how to define and code JCL symbols in JCL, see[Using
[System Symbols and JCL Symbols” on page 5-13

Example: Using System Symbols

Suppose you want to start a task whose source JCL is in the DUMPCHK member
of a partitioned data set. You can specify system symbols for the task in one of the
following two ways:

On the START command:
Suppose you enter the following command to start the DUMPCHK task:

START DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY,SUB=CICS&SYSNAME

If the substitution text for the &SYSNAME system symbol is SYS1 on the
system that processes the START command, the system substitutes the text
SYS1 for the &SYSNAME system symbol. The equivalent source JCL is:

7-8 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

//DUMPCHK JOB MSGLEVEL=1
//STARTING EXEC DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY,SUB=CICSSYS1

In the source JCL:
You can also specify system symbols in the source JCL for started tasks.
Keep in mind that system symbols in the source JCL are resolved during JCL
processing, rather than command processing.

For example, suppose you code the following JCL in the DUMPCHK procedure:

//DUMPCHK PROC
//S1 EXEC PGM=DUMPPROG,PARM=CICS&SYSNAME

As in the previous example for the START command, if the substitution text for
the &SYSNAME system symbol is SYS1 on the system that processes the JCL,
the system substitutes the text SYS1 for the &SYSNAME system symbol. The
equivalent JCL is:

//DUMPCHK PROC
//S1 EXEC PGM=DUMPPROG,PARM=CICSSYS1

The DUMPCHK procedure can also include system symbols on other
statements. For example, you might specify system symbols in DD statements
that must specify data sets with unique names on different systems.

Suppose that two systems, named SYS1 and SYS2, are to process a
DUMPCHK procedure that contains the following statement:

//L0G DD DSN=&SYSNAME..LOG,DISP=......

When each system processes the statement, the following data set names
result:

SYS1.LOG on system SYS1
SYS2.L0G on system SYS2

Example: Using JCL Symbols

Suppose that processing for some JCL is charged to multiple departments, all with
different accounting numbers, and the JCL is to reflect the number of the
department to be charged for the processing.

Code a symbol in the source JCL to represent the different account numbers:
ACCT=8&ACCTNO

Assume that the source JCL is a started task named TEST. There are three
departments (A, B, and C) with three accounting codes (ACODE, BCODE, and
CCODE) respectively. You can have each department indicate its accounting code
on the START command. For example, when department A enters the following
command:

START TEST,ACCTNO=ACODE
The system places the ACODE value in the ACCTNO field.

You can also use symbols to set default values that can later be overridden (as
needed).

For example, if the procedure TEST has the following JCL coded:
ACCT=8&ACCTNO

Chapter 7. Started Tasks 7-9

Started Tasks

you can set the value of ACCT to ACODE by including the following JCL on the
PROC statement of procedure TEST:

ACCTNO=ACODE
ACODE is provided as the default value.

If another value is provided on the START command (for example, START TEST,
ACCT=BCODE), the new value (BCODE) overrides the default (ACODE) provided
in the JCL, but only for this instance of the started task. If the START command is
entered again without a value, the default will again be provided.

Note: This example modifies the step-level accounting data defined by the EXEC
statement ACCT parameter. The START command JOBACCT parameter
can be used to specify job-level accounting data.

Using Symbols on Certain JCL Statements
You might need to specify symbols within JCL for each invocation of a started task.
Consider the following statements for possible use of symbols:

e DD statements
e EXEC statements.

If DD statement keywords (or the positional parameters for UNIT and VOL=SER)
are specified on a START command, the following DD statement is added to the
JCL processed by the system:

//1EFPROC.IEFRDER DD keyword=value...

The added JCL either adds a DD statement (if an IEFRDER statement is not
specified in the source JCL) or modifies an existing IEFRDER DD statement in the
source JCL. The DD statement override allows you to determine the characteristics
for one DD statement when you issue the START command.

The DD statement keyword parameters can be any keyword that is valid on the

MVS JCL DD statement. The IEFRDER DD statement contains all of the DD
keywords specified on the START command. For example:

START ABLE.LOAD,DSNAME=MY.LOADLIB,DISP=SHR

creates the following DD statement:
//IEFPROC.IEFRDER DD DSNAME=MY.LOADLIB,DISP=SHR

Also, DD statement keywords can be specified on the START command for
positional parameters on the DD statement in the procedure. For example:

START CICS.CICS,333,U30PAK

is the same as:
START CICS.CICS,UNIT=333,V0L=SER=U30PAK

7-10 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

Using JCL Statement Keywords and Symbols to Override JCL
You can use JCL statement keywords and symbols to override existing JCL.

JOB statement keyword parameters are those keywords defined for the MVS JCL
JOB statement. These keywords will add to or override the specification of the JOB
statement keywords. The EXEC statement keyword parameters are those keywords
defined for the MVS JCL EXEC statement. The treatment of these keywords
depends on whether the target of the START command is a job or a procedure.
See the following table. EXEC keywords that are also JOB keywords, such as
TIME and REGION, are treated as JOB keywords.

In this next example, assume ABC is a procedure, not a job. The following START
command creates a REGION=200K parameter on the JOB statement and a
DYNAMNBR=2 parameter on the EXEC statement:

START ABC.DEF,REGION=200K,DYNAMNBR=2

The result of the command is the following JCL:

//ABC JOB REGION=200K,MSGLEVEL=1
//DEF EXEC ABC,DYNAMNBR=2

You can use symbols to override other symbols that are specified in the procedure
to be started. For example, the following command starts customer information
control system (CICS) with a 20K region:

START CICS,A=20K

A=20K overrides A=10K on the following PROC statement:
//CICS PROC A=10K

// EXEC PGM=XYZ,REGION=&A

The command results in the following JCL:

//CICS JOB MSGLEVEL=1
//STARTING EXEC CICS,A=20K

Note: Select names for symbols carefully; see [‘Coding Symbols in JCL” on|
for rules to use when coding and naming symbols.

The following table describes the actions that result from specifying various
keywords and symbols on the START command:

Source JCL Keyword Result

JOB JOB Overrides or added to source JOB statement

JOB EXEC Placed on SET statement as a symbol

JOB DD Overrides, or added to, source IEFRDER DD
statement

Procedure Other (see Placed on SET statement as a symbol

note 1)

Procedure JOB Overrides, or added to, source JOB statement

Procedure EXEC Placed on EXEC memname statement overriding
keyword

Procedure DD Overrides, or added to, source IEFRDER DD
statement

Chapter 7. Started Tasks 7-11

Started Tasks

Source JCL Keyword Result
JOB Other (see Placed on EXEC memname statement as symbol
note 1)

Note 1: Other does not include the START command reserved words SUB,
JOBNAME, and JOBACCT.

Naming a Started Task (Source JCL is a Job)

If you plan to run the started task more than once on the same system or on
different systems within a sysplex, consider using unique job names for each
instance of the started task. For example, you may want to name started tasks
according to the system tasks they support; you can name one set of jobs for CICS
terminal-owning regions (CICSTOR1, CICSTOR2) and another set for CICS
application-owning regions (CICSAOR1, CICSAOR2).

Note: You are not required to change the name of your started task; you probably
will not want to change the name of a started task that typically has only
one instance (OAM or LLA, for example).

There are four ways that you can name or identify a started task:
e JOBNAME parameter

Use the JOBNAME parameter on the START command to rename the started
task dynamically (see the description of START in [0S/390 MVS Systen

for details).

¢ Membername

If you do not use the JOBNAME parameter on the START command and the
source JCL is a procedure, the system automatically assigns the membername
as the jobname.

e Source JCL

If you do not use the JOBNAME parameter on the START command and the
source JCL for the started task is a job, the jobname provided on the JOB
statement is assigned as the jobname.

¢ |dentifier

If specified on the START command, and the started task runs in a system
address space that is created using common system address space procedure
IEESYSAS, the identifier is assigned to the started task.

Note: Given the capability to assign the jobname dynamically, it is
recommended that you use the JOBNAME parameter instead of the
identifier. Only operators can view the identifier for a started task,
limiting automation and identification by other users.

If you decide to change the names of started tasks, be sure to update other
applications to recognize the new names.

7-12 0S/390 V2R10.0 MVS JCL Reference

Started Tasks

Setting Up Operator Education for Your Started Task

When you have set up the system support necessary and have coded the JCL,
educate the system operators about any overrides you want them to use on the
START command for your started task, and inform them of when they should use
the overrides. Also, educate them on how to display information about your started
task (using the DISPLAY command) as well as how to manage your started task
(using the MODIFY, STOP, CANCEL, RESET, and FORCE commands).

Chapter 7. Started Tasks 7-13

Started Tasks

7-14 0S/390 V2R10.0 MVS JCL Reference

JCL Command Statement

Chapter 8. JCL Command Statement

Purpose

Use the JCL command statement to enter an MVS operator command through the
input stream on a JES2 system.

The COMMAND statement, described on page [9-1] is the preferred way to specify
MVS and JES commands.

Note: To enter a JES2 command, use the JES2 command statement described
on page [27-2] To enter a JES3 command, use the JES3 command
statement described on page

The system usually executes an in-stream command as soon as it is read.
Therefore, the command will not be synchronized with the execution of any job or
step in the input stream. To synchronize a command with the job processing, tell
the operator the commands you want entered and when they should be issued, and
let the operator enter them from the console.

The system processes each command according to installation options for both the
input device from which the job was read, and the job class.

Considerations for an APPC Scheduling Environment

The command statement has no function in an APPC scheduling environment. If
you code the command statement, the system will check it for syntax and ignore it.

References

For more information on MVS commands and for descriptions of their parameters,
see|0S/390 MVS System Commands.

Description

Syntax

Operation Field

// command [parameter] [comments]

The command statement consists of the characters // in columns 1 and 2 and three fields: operation
(command), parameter, and comments.

Do not continue a command statement.

The operation field contains the MVS operator command and is coded as follows:

* Precede and follow the command with one or more blanks. It can begin in any
column.

¢ Code the command or a valid abbreviation for the command.

© Copyright IBM Corp. 1988, 2000 8-1

JCL Command Statement

Parameter Field

Code any required parameters. When more than one parameter is coded, separate
them with commas.

Comments Field

The comments field follows the parameter field after at least one intervening blank.
The system removes the comments field from the command before processing the
command.

Location in the JCL

A command statement can appear anywhere after a JOB statement and before the
end of the job. If a command statement appears between jobs, it is ignored. A
command statement should not be placed before the first JOB statement in an
input stream.

If a command statement contains errors, it is not executed. If the erroneous
statement is between two jobs in the input stream, the system does not issue a
message to indicate that the command is not executed.

Defaults

Two ways to control command authority are through JES initialization parameters
and RACF. For information about controlling command authority through
initialization parameters see, Initialization and Tuning for the appropriate subsystem
at your installation. For information about controlling command authority using
RACF see, [0S/390 MVS Planning: Operations,

Examples of the Command Statement
Example 1

// DISPLAY TS,LIST

In response to this command statement, the system displays the number and
userid of all active time-sharing users of the system.

Example 2
// F NETVIEW,CLOSE IMMED

In response to this command statement, the system shuts down NETVIEW. The
system considers IMMED to be a comment due to the delimiting blank.

8-2 0S/390 V2R10.0 MVS JCL Reference

COMMAND

Chapter 9. COMMAND Statement

Purpose

Use the COMMAND statement to specify an MVS or JES command that the
system issues when the submitted JCL is converted.

The COMMAND statement is the preferred way to specify commands, rather than
specifying commands on the JCL command statement, which is described in
[Chapter 8, “JCL Command Statement” on page 8-1|

When the system encounters an in-stream command it issues message IEFC165I
to inform the operator. If the operator is requested to authorize running of
commands entered through the input stream, the system then issues message
IEFC166D asking for the operator to respond. The operator should respond REPLY
id,"Y" if the command displayed in message IEFC165l is to be run, and REPLY
id,'N' otherwise.

Because the system usually executes an in-stream command as soon as it is
converted, execution of the command will not be synchronized with the execution
of any job or job step in the input stream. To synchronize a command with job
processing, tell the operator the commands you want entered and when they
should be issued, and let the operator enter them from the console.

The system processes each command according to installation options for both the
input device from which the job was read, and the job class.

On a JESS system, the system does not record in a job's JESMSGLG data set any
commands you enter with the COMMAND statement.

References

For more information on MVS and JES commands and for descriptions of their
parameters, see [0S/390 MVS System Commands,|0S/390 JES2 Commands, and
[0S/390 JES3 Commands)

Considerations for an APPC Scheduling Environment

The COMMAND statement has no function in an APPC scheduling environment. If
you code a COMMAND statement, the system will check it for syntax and then
ignore it.

Description

Syntax

© Copyright IBM Corp. 1988, 2000 9-1

COMMAND

//[name] COMMAND 'command command-operand' [comments]

The COMMAND statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (COMMAND), ‘command command-operand’, and comments.

Continuation onto Another Statement: To continue a COMMAND statement, end the statement in
column 71 and continue the statement in column 16 of the next statement. For example:

(column 71)
// COMMAND 'START XYZ,PARM='ABC,DEF,GHI,JK',TIME=1440,REGION=4
// 096K"'
|
(column 16)

Do not code an apostrophe in column 71; see[‘Continuing Parameter Fields Enclosed in|
|Apostrophes” on page 3-5|if you need more information.

Name Field
A name is optional on a COMMAND statement. If used, code it as follows:

e The name should be unique within the job.

e The name must begin in column 3.

» The name is 1 through 8 alphanumeric or national ($, #, @) characters.
» The first character must be alphabetic or national ($, #, @).

e The name must be followed by at least one blank.

If a name is not coded, column 3 must be blank.

Operation Field

The operation field consists of the characters COMMAND and must be preceded
and followed by at least one blank. It can begin in any column.

Parameter Field

The parameter field specifies the name of the command, at least one blank, and
then operands for the command. The command and its operands must be
preceded by at least one blank, enclosed in apostrophes, and followed by at least
one blank. The maximum length of the command is 123 characters. If the
command operand contains an apostrophe, code it as two apostrophes. You can
specify any MVS command that can be issued from the operator’s console.

Comments Field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
A COMMAND statement can appear anywhere in the job after the JOB statement.

Defaults

Two ways to control command authority are through RACF and through JES
initialization parameters. For information about controlling command authority using
RACF, see [0S/390 MVS Planning: Operations For information about controlling
command authority through initialization parameters, see either [05/390 JESZ

9-2 0S/390 V2R10.0 MVS JCL Reference

COMMAND

Initialization and Tuning Reference| or|0S/390 JES3 Initialization and Tuning|
Referenc@, as appropriate for the subsystem at your installation.

Examples of the COMMAND Statement

Example 1

The following shows an example COMMAND statement with the START command.
/l COMMAND 'S VTAM' start VTAM

Example 2

The following is an example of a command that is continued with the command
operand in apostrophes.

// COMMAND 'SEND ''This message will be sent to user SCOTTC
// when this job is converted'',USER=(SCOTTC)'

The command statement must end in column 71 and be continued in column 16.

Chapter 9. COMMAND Statement 9-3

COMMAND

9-4 0S/390 V2R10.0 MVS JCL Reference

Comment Statement

Chapter 10. Comment Statement

Purpose

Use the comment statement to enter a comment on the output listing. The
comment statement is used primarily to document a job and its resource
requirements.

Description

Syntax

//*comments

The comment statement consists of the characters //* in columns 1, 2, and 3 and one field:
comments.

Code the comments in columns 4 through 80. The comments field does not need to be preceded or
followed by blanks. (In a JES3 system, do not use a JES3 keyword as the first word in column 4 of
the comment field, or the comment might be taken for a JES3 statement.)

Do not continue a comment statement using continuation conventions. Instead, code additional
comment statements.

Location in the JCL

Place a comment statement anywhere after the JOB statement. You can place a
comment statement between continuations of JCL statements.

Listing of Comments Statements

Use the MSGLEVEL parameter on the JOB statement to request that the job log
output listing contain all the JCL statements for your job.

See |Figure 6-1 on page 6-1| for the comment statement characters used in
columns 1, 2, and 3.

Examples of the Comment Statement
//* THE COMMENT STATEMENT CANNOT BE CONTINUED,
//* BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//* COMMENT STATEMENT WITH MORE COMMENT
//* STATEMENTS.

© Copyright IBM Corp. 1988, 2000 10-1

Comment Statement

10-2 0S/390 V2R10.0 MVS JCL Reference

CNTL

Chapter 11. CNTL Statement

Purpose

Use the CNTL statement to mark the beginning of program control statements in
the input stream. Program control statements specify control information for a
subsystem. The program control statements are ended by an ENDCNTL statement
and are called a CNTL/ENDCNTL group.

The DD statement that defines a data set to be processed by a subsystem must
refer to the CNTL statement in order for the subsystem to use the program control
statements in processing the data set.

References
The program control statements are documented in the publications for the

subsystems. For example, see PSF/MVS Application Programming Guide for
information on program control statements for the Print Services Facility (PSF).

Description

Syntax

//1abel CNTL [* comments]

The CNTL statement consists of the characters // in columns 1 and 2 and four fields: label,
operation (CNTL), parameter (*), and comments. The * parameter is required only when comments
follow.

Label Field

Code a label on every CNTL statement, as follows:

e The label must begin in column 3.

» The label is 1 through 8 alphanumeric or national ($, #, @) characters.
» The first character must be alphabetic or national ($, #, @)

e The label must be followed by at least one blank.

Operation Field
The operation field consists of the characters CNTL and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter Field

The parameter field contains only an asterisk. When present, the asterisk must be
preceded and followed by at least one blank. The asterisk is required only when the
statement contains comments.

© Copyright IBM Corp. 1988, 2000 11-1

CNTL

Comments Field
The comments field follows the asterisk after at least one intervening blank.

Location in the JCL

A CNTL statement must appear before the DD statement that refers to it. The
CNTL and its referencing DD statement must be in the same job step or in the
same cataloged or in-stream procedure step. A CNTL statement can be in a
procedure and the referencing DD statement can be in the calling job step, but not
vice versa.

You can define CNTL/ENDCNTL groups at the job level and the step level. A
job-level CNTL/ENDCNTL group appears before the first EXEC statement of the
job. A step-level CNTL/ENDCNTL group appears within the same job step or
procedure step. If you code multiple step-level CNTL/ENDCNTL groups, the label
on each CNTL statement must be unique within that step. Likewise, multiple
job-level CNTL statements must also have unique labels. You can, however, use
the same name on a step-level CNTL label and a job-level CNTL label. IN this
case, the step-level CNTL group overrides the job-level CNTL group.

Program Control Statements
Program control statements supply control information for a subsystem. A
subsystem can require one or more program control statements. The one or more
statements must be immediately preceded by a CNTL statement and immediately
followed by an ENDCNTL statement.

Do not code JCL statements within a program control group.

Program Control Statements in Procedures

You can code symbolic parameters on program control statements in a cataloged
or in-stream procedure.

You can override parameters on program control statements in a procedure.
Follow the rules used for overriding DD statement parameters in a procedure. For
more information, see [‘Modifying OUTPUT JCL and DD Statements” on page 5-4}

Example of the CNTL Statement
//STEP1 EXEC PGM=PRINT
//ALPHA CNTL * PROGRAM CONTROL STATEMENT FOLLOWS
//PRGCNTL PRINTDEV BUFN0=20,PIMSG=YES,DATACK=BLOCK
//OMEGA ENDCNTL
//AGAR DD UNIT=3800-3,CNTL=+.ALPHA

The PSF subsystem uses the BUFNO, PIMSG, and DATACK options of the
PRINTDEYV control statement to print the data set for DD statement AGAR on a
3800 model 3. For information about the PRINTDEV statement, see the manual
|[PSF for 0S/390: Customization,

11-2 0S/390 V2R10.0 MVS JCL Reference

DD

Chapter 12. DD

Statement

Purpose

Use

the DD (data definition) statement to describe a data set and to specify the

input and output resources needed for the data set.

The

parameters you can specify for data set definition are arranged alphabetically

in the following pages.

References

For information about the JES initialization parameters that provide installation

defaults, see [0S/390 JES2 Initialization and Tuning Referenceland |0S/390 JES3
|Initialization and Tuning Referencel

Description

Syntax

/1l

/1l

[ddname 1 DD [positional-parameter][,keyword-parameter]...[comments]
[procstepname.ddname]

[ddname 1 DD
[procstepname.ddname]

The DD statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (DD), parameter, and comments. Do not code comments if the parameter field is
blank.

A DD statement is required for each data set.

The maximum number of DD statements per job step is 3273, based on the number of single
DD statements allowed for a TIOT (task input output table) control block size of 64K. This limit
can be different depending on the installation-defined TIOT size. The IBM-supplied default TIOT
size is 32K. For information about changing the size of the TIOT, see

|Programming: Authorized Assembler Services Guidel

In a JES3 system, the installation might further reduce the maximum number of DD statements
per job.

Name Field

When specified, code a ddname as follows:

e Each ddname should be unique within the job step. If duplicate ddnames
appear in a job step, processing is as follows:

© Copyright IBM Corp. 1988, 2000

— In a JES2 system: The system performs device and space allocation and
disposition processing for both DD statements; however, it directs all
references to the first DD statement in the step.

— In a JES3 system: If both DD statements request JES3 or jointly-managed
devices, the system cancels the job during JES3 interpretation. If only one
or neither DD statement requests a JES3 or jointly-managed device, the
system performs device and space allocation processing for both DD
statements; however, it directs all references to the first DD statement in
the step.

12-1

DD

12-2

e The ddname must begin in column 3.

* The ddname is 1 through 8 alphanumeric or national ($, #, @) characters.

The first character must be alphabetic or national ($, #, @).

The ddname must be followed by at least one blank.
Omitting the ddname

Do not code a ddname in two cases:

e The DD statement defines a data set that is concatenated to the data set of the
preceding DD statement.

Note: Allocation processing does not fail an attempt to concatenate an HFS
file to another HFS file, or an MVS data set, even though it is
impossible to read from or write to concatenated HFS files. Do not
request concatenation of HFS files.

e The DD statement is the second or third consecutive DD statement for an
indexed sequential data set.
Name Field when Overriding a Procedure DD Statement
Code the following in the name field of a DD statement that is to override a
procedure DD statement:

1. The name of the procedure step that contains the DD statement to be
overridden

2. Followed by a period
3. Followed by the ddname of the procedure DD statement that is to be
overridden.
Name Field when Adding a DD Statement to a Procedure
Code the following in the name field of a DD statement that is to be added to a
procedure:
1. The name of the procedure step to which the DD statement is to be added
2. Followed by a period

3. Followed by a ddname of your choosing.

For example:
//PROCSTP1.DDA DD parameters

Name Field when Adding a DD Statement to a Program
When you code a DD statement with a ddname of procstepname.ddname within a
program step, the system:
1. Checks the syntax of both the procstepname qualifier and the ddname qualifier
2. Uses only the ddname qualifier as the statement ddname
3. Adds the DD statement to the program step that contains the statement

4. Issues an informational message because procstepname is coded outside of a
procedure.

0S/390 V2R10.0 MVS JCL Reference

DD

Special ddnames

Use the following special ddnames only when you want to use the facilities these
names represent to the system. These facilities are explained in [Chapter 13
[Special DD Statements].

JOBCAT SYSCHK
JOBLIB SYSCKEQOV
STEPCAT SYSIN
STEPLIB SYSMDUMP
SYSABEND SYSUDUMP

Do not use the following ddnames on a DD statement in a JES2 system. They
have special meaning to JES2.

JESJCLIN JESMSGLG
JESJCL JESYSMSG

The following ddnames have special meaning to JESS; do not use them on a DD
statement in a JES3 system.

JCBIN JESJCL JS3CATLG
JCBLOCK JESMSGLG J3JBINFO
JCBTAB JOURNAL J3SCINFO
JESJCLIN JST J3STINFO
JESInnnn JESYSMSG STCINRDR
TSOINRDR

Operation Field

The operation field consists of the characters DD and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter Field

A DD statement has two kinds of parameters: positional and keyword. All
parameters are optional.

Leave the parameter field blank only in the following case:

e When SMS will provide the necessary DD description.
Positional Parameters

A DD statement can contain one positional parameter. If coded, this positional
parameter must precede all keyword parameters.

POSITIONAL PARAMETERS VALUES PURPOSE

[%] *: for data sets containing no In a non-APPC scheduling

[DATA] JCL DATA: for data sets environment, begins an

See page or[i2-45 containing JCL in-stream data set.

DUMMY Specifies no space allocation,

See page (2707 no disposition processing,
page [{2-107] and, for BSAM and QSAM,

no I/O.

DYNAM (Parameter is supported to

See page [[2-170] provide compatibility with
pag previous systems.)

Chapter 12. DD Statement 12-3

DD

Keyword Parameters

A DD statement can contain the following keyword parameters. You can code any
of the keyword parameters in any order in the parameter field after a positional

parameter, if coded.

Do not use DD statement keywords as symbolic parameters in procedures to be

started by a START command from the operator console.

KEYWORD PARAMETERS

VALUES

PURPOSE

ACCODE=access-code
See page |12-19

For ISO/ANSI/FIPS Version 3 tapes,
access-code: 1 - 8 characters, first
must be upper case A - Z.

For ISO/ANSI Version 4 tapes,
access-code: 1 - 8 characters, first
must be upper case A - Z, number O -
9, or one of these special characters: !
% &' ()+,-. 1 <=>7_

Specifies or changes an
accessibility code for an
ISO/ANSI/FIPS Version

3 or ISO/ANSI Version 4
tape output data set.

AMP=(subparameter)
AMP=("'subparameter[,subparameter]...")

subparameters:

AMORG
BUFND=number
BUFNI=number
BUFSP=bytes

CROPS= {RCK}
{NCK}
{NRE}
{NRC}
OPTCD= (I }
L}
{IL}
RECFM= {F }
{FB}
{v}
{vB}

STRNO=number
SYNAD=modulename

see|0S/390 DFSMS: Using Data Setg

Completes information in
an access method
control block (ACB) for a
VSAM data set.

TRACE
See page [12-21
With SMS only: U: space specified in records Specifies a record
AVGREC= {U} K: space specified in thousands request and the quantity
{K} of records of primary and
{M} M: space specified in millions secondary space
of records specified on the SPACE
See page |12-29 parameter.
BURST= {YES} YES or Y: burster-trimmer-stacker Directs output to a
{y 1} NO or N: continuous forms stacker stacker on a 3800
mo i Printing Subsystem.
See page |12-33

12-4 0S/390 V2R10.0 MVS JCL Reference

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

CCSID=nnnnn nnnnn: 1 - 65535 Specifies the coded
character set identifier
See page indicating the character
code conversion
performed on reads from
and writes to tapes
accessed in ISO/ANSI
Version 4 format.
CHARS= {table-name } 1 - 4 table-name subparameters: Names
{(table-name[,table-name]...)} 1 - 4 alphanumeric or $, #, @ character-arrangement
{DUMP } characters tables for printing on a
{ (DUMP[,table-name]...) }

See page

DUMP: 204-character print lines
on 3800

3800 Printing
Subsystem. Requests a
high-density dump on a
SYSABEND or
SYSUDUMP DD
statement.

CHKPT=EQV
See page [12-39

Requests a checkpoint
at each end-of-volume
except the last.

CNTL= {*.label }
{*.stepname.label
{*.stepname.procstepname.label}

See page

label: names CNTL statement

stepname: CNTL in named step

procstepname: step in named
procedure

Causes the system to
execute statements
following an earlier
CNTL statement.

COPIES= {nnn
{ (nnn, (group-value[,group-value]...)) }
{(, (group-value[,group-value]...))

See page |12-42

nnn (JES2): 1 - 255
nnn (JES3): 1 - 254
1 - 8 group-values (JES2): 1 - 255
1 - 8 group values (JES3): 1 - 254

Specifies number of
copies printed. For a
3800 Printing
Subsystem, can instead
specify number of
copies of each page
printed before the next
page is printed.

With SMS only:
DATACLAS=data-class-name

See page

data-class-name: installation-defined
name of a data class

Specifies the data class
for a new data set.

DCB=(subparameter[,subparameter]...)

DCB= ({dsname }
({*.ddname }
({*.stepname.ddname }
({*.stepname.procstepname.ddname}
(

[,subparameter]...

—— — — —

See page [12-51

subparameter: see tables in DCB
parameter description

*.ddname: copy DCB parameter from
named cataloged data set

dsname: copy DCB information from
named earlier DD statement

stepname: DD in named step

procstepname: step in named
procedure

Completes information in
data control block
(DCB).

DDNAME=ddname
See page |12-70

ddname: names later DD statement

Postpones defining the
data set until later in
same step: on a DD
statement in the calling
step or in a procedure
called by the step.

Chapter 12. DD Statement

12-5

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

DEST=destination

destination (JES2):
LOCAL
name
Nnnnn
NnnRmmmm to NnnnnRmm
Rnnnn or RMnnnn or RMTnnnn
Unnnn
(node,userid)

destination (JES3):
ANYLOCAL
device-name
device-number
group-name
nodename
(node,userid)

See page

LOCAL or ANYLOCAL: local device
name: named local or remote device
Nnnnn: node (1 - 1000)

NnRm: node (1 - 1000) and remote
work station (1 - 9999); 6 digits
maximum for n and m combined

Rnnnn or RMnnnn or RMTnnnn:
remote terminal (1 - 9999)

Unnnn: local terminal (1 - 9999)

(node,userid): node (1 - 8
alphanumeric or $, #, @ characters)
or $, #, @ characters) and TSO/E
and TSO/E userid (1 - 7 alpha-
numeric or $, #, @ characters)
or VM userid (1 - 8 alphanumeric
or $, #, @ characters)

device-number: 3-digit or 4-digit
hexadecimal number (/ required
before 4-digit number)

device-name: local device (1 - 8
alphanumeric or $, #, @ characters)

group-name: 1 or more local devices
or remote stations (1 - 8 alpha-
numeric or $, #, @ characters)

nodename: node (1 - 8 alpha-
numeric or $, #, @ characters)

Sends a sysout data set
to the specified
destination.

DISP=status

DISP=([status] [,normal-termination-disp]
[,abnormal-termination-disp])

See page [12-80

status: NEW, OLD, SHR (for shared),
MOD (for data set to be modified)

normal-termination-disp: DELETE,
KEEP, PASS, CATLG, or UNCATLG

abnormal-termination-disp: DELETE,
KEEP, CATLG, or UNCATLG

Describes the status of
the data set and tells the
system to do the
following with the data
set after normal or
abnormal termination of
the step or job: delete or
keep it on its volume(s),
pass it to a later step, or
add it to or remove it
from the catalog.

DLM=delimiter

delimiter: 2 characters

In a non-APPC

See page [i2-92] scheduling environment,
pag - terminates an in-stream
data set.
DSID= {id } id: 1 - 8 characters Identifies a data set on a
{(id,[V])} V: label was verified (only on a diskette of a 3540
See page [12-94 SYSIN DD statement) Diskette Input/Output

Unit.

12-6 0S/390 V2R10.0 MVS JCL Reference

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

{DSNAME} = {dsname

{DSN } dsname (member-name)
dsname (generation-number)
dsname (area-name)
&&dsname

&&dsname (member-name)
&&dsname (area-name)
*.ddname
*.stepname.ddname

NULLFILE
See page [12-95

A A A A A A A e

*.stepname.procstepname.ddname

B s e R e

unqualified dsname: 1 - 8
alphanumeric or $, #, @
characters, -, +0

qualified dsname: multiple names
joined by periods

member-name: member in PDS
or PDSE

generation-number: 0 or signed
integer

area-name: INDEX, PRIME, or
OVFLOW area in indexed
sequential data set

&&dsname: temporary data set name

*.ddname: copy dsname from
earlier DD

stepname: DD in named step

procstepname: step in named
procedure

NULLFILE: dummy data set

Names the data set.

DSNTYPE= {LIBRARY

{ }
{HFS }
{ }
{PIPE }
See page [12-104]

LIBRARY: partitioned data
set extended (PDSE)

HFS: hierarchical file system
(HFS) data set

PDS: partitioned data set

PIPE: FIFO special file

Specifies the type of
data set.

EXPDT= {yyddd }
{yyyy/ddd}

See page |12-111

yyddd: expiration date

(yy: 2-digit year, ddd: day 001-366)
yyyy/ddd: expiration date

(yyyy: 4-digit year,

ddd: day 001-366)

Specifies an expiration
date for the data set.

FCB= {fcb-name }
{(fcb-name [,ALIGN]) }
[LVERIFY]
See page [12-113]

fcb-name: 1 - 4 alphanumeric or
$, #, @ characters

ALIGN: operator check forms
alignment

VERIFY: operator verify FCB image

Specifies FCB image,
carriage control tape for
1403 Printer, or
data-protection image
for 3525 Card Punch.

FILEDATA= {BINARY}
{TEXT }

See page[12-116

BINARY: byte-stream file
TEXT: delimited by the
EBCDIC newline character

Specifies the
organization of a
hierarchical file.

FLASH={overlay-name
{(overlay-name[,count])}
{NONE

See page[12-117

overlay-name: forms overlay frame
(1 - 4 alphanumeric or $, #,
@ characters)
count: copies with overlay (0 - 255)
NONE: suppresses flashing

For printing on a 3800
Printing Subsystem,
indicates that the data
set is to be printed with
the named forms overlay
and can specify how
many copies are to be
flashed.

FREE= {END } END: unallocate at end of last step Specifies when to
{CLOSE} CLOSE: unallocate when data set is unallocate the resources

See page[12-119 closed for this data set.

HOLD= {YES} YES or Y: holds this sysout data set Tells the system to hold
{vy } NO or N: allows normal processing this sysout data set until
{NO } for this sysout data set's output released by the
N} class operator.

See page|12-122

KEYLEN=bytes
See page [12-125

bytes: number of bytes (1-255 for
key-sequenced (KS), 0-255 for
sequential (PS) or partitioned (PQO))

Specifies the length of
the keys in the data set.

Chapter 12. DD Statement

12-7

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

With SMS only:
KEYOFF=offset-to-key

See page |12-126

offset-to-key: position of key (0 to
difference of LRECL and KEYLEN
minus 1)

Specifies the offset of
the first byte of the
record key.

LABEL= ([data-set-seq-no][,1abel-type] [,PASSWORD])
[,NOPWREAD])
[, 1)

See page|12-127

[,IN] [,RETPD=nnnn 1)
[,ouT] [,EXPDT= {yyddd H
L 1L {yyyy/ddd}]

data-set-seqg-no: data set position on
tape volume (1 - 4 decimal digits)
label-type:
SL: IBM standard labels
SUL: IBM standard and user labels
AL: ISO/ANSI Version 1 and
ISO/ANSI/FIPS Version 3 labels
AUL: user labels and ISO/ANSI
Version 1 and ISO/ANSI/FIPS
Version 3 labels
NSL: nonstandard labels
NL: no labels
BLP: bypass label processing
LTM: leading tapemark
PASSWORD: password required to
access data set
NOPWREAD: password required to
change or delete data set
IN: only read BSAM data set opened
for INOUT or BDAM data set
opened for UPDAT
OUT: only write to BSAM data set
opened for OUTIN or OUTINX
RETPD=nnnn: retention period
(nnnn: 1 - 4 decimal digits)
EXPDT=yyddd: expiration date
(yy: 2-digit year,
ddd: day 001 - 366)
EXPDT=yyyy/ddd: expiration date
(yyyy: 4-digit year,
ddd: day 001 - 366)

Specifies information
about a data set’s label,
password, opening,
expiration date, and, for
a tape data set, relative
position on the volume.

With SMS only:
LIKE=data-set-name

See page[12-135

data-set-name: dsname of model data
set

Specifies the attributes
of a new data set.

LRECL=bytes
See page[12-137

bytes: length in bytes (1-32760 for PS
or PO, 1-32761 for KS, ES, or RR)

Specifies the length of
the records in the data
set.

With SMS only:
MGMTCLAS=data-class-name

See page [12-139

data-class-name: installation- defined
name of a data class

Specifies the
management class for a
new data set.

MODIFY= {module-name
{ (module-name[,trc])}

See page |12-141

module-name: 1 - 4 alphanumeric or
$, #, @ characters

trc: table-name in CHARS parameter
(O for first, 1 for second, 2 for
third, and 3 for fourth table-name)

Specifies a
copy-modification
module in
SYS1.IMAGELIB to be
used by JES to print the
data set on a 3800
Printing Subsystem.

OUTLIM=number
See page [12-142

number: 1 - 16777215 logical records
maximum

Limits the logical records
in this sysout data set.

12-8 0S/390 V2R10.0 MVS JCL Reference

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

OUTPUT= {reference }
{(reference[,reference]...)}

reference:

*.name
*.stepname.name
*.stepname.procstepname.name

See page[12-144

name: names earlier OUTPUT JCL
statement

stepname: OUTPUT JCL in named
step

procstepname: step in named
procedure

Associates this sysout
data set with one or
more OUTPUT JCL
statements.

PATH=pathname
See page [12-148

pathname: pathname for a file

Specifies the name of
an HFS file.

PATHDISP=(normal-termination-disposition,
abnormal-termination-disposition)

See page [12-151

normal-termination-disposition:
KEEP, DELETE

abnormal-termination-disposition:
KEEP, DELETE

Tells the system to keep
or delete the file after
the job step ends.

PATHMODE=file-access-attribute
PATHMODE=(file-access-attribute
[,file-access-attribute]...)

See page [12-153

file-access-attribute for file owner class:
SIRUSR, SIWUSR, SIXUSR, SIRWXU

file-access-attribute for file group class:
SIRGRP, SIWGRP, SIXGRP, SIRWXG

file-access-attribute for file other class:
SIROTH, SIWOTH, SIXOTH, SIRWXO

file-access-attribute to set process IDs:
SISUID, SISGID

Specifies file access
attributes when creating
an HFS file.

PATHOPTS=file-option
PATHOPTS=(file-option[,file-option]...)

See page [12-156

file-option for access group:
ORDONLY, OWRONLY, ORDWR
file-option for status group:
OAPPEND, OCREAT, OEXCL,
ONOCTTY, ONONBLOCK, OTRUNC

Specifies access and
status for a file.

PROTECT=YES
See page [12-160

Requests that RACF
create a discrete profile
to protect a data set on
direct access or a tape
volume.

QNAME=procname[. tcamname]

See page |12-163

procname: names a TPROCESS
macro that defines a destination
queue for the messages

tcamname: names a TCAM job or
started task to process the messages

Indicates that this data
set contains TCAM
messages.

RECFM

}

}

}

b [A]
oM
}

}

}

}

See page[12-164

Record format is:
F: fixed length
B: blocked
S: spanned
V: variable length
U: undefined length
Control characters are:
A: ISO/ANSI code
M: machine code

Specifies the format and
characteristics of the
records in a data set.

With SMS only:

RECORG= {KS}
{ES)
{RR}
{Ls}
See page [12-167]

Organization of records:
KS: key-sequenced
ES: entry-sequenced
RR: relative record
LS: linear space

Specifies the
organization of the
records in a VSAM data
set.

Chapter 12. DD Statement

12-9

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

With SMS only:
REFDD= {*.ddname 1
{*.stepname.ddname }

{*.stepname.procstepname.ddname}

See page [12-169

Referenced DD statement:
ddname: unqualified name
stepname: qualified by step name
procstepname: step in procedure

Specifies the attributes
of a new data set by
referring to a previous
DD statement.

RETPD=nnnn
See page [12-171

nnnn: number of days (0-9999)

Specifies the retention
period for a new data
set.

SECMODEL=(profile-name[,GENERIC])
See page [12-174

GENERIC: model is generic profile

RLS= {NRI} NRI: can read uncommitted changes Specifies the
{CR } CR: can read only committed changes record-level sharing
See page[12-173 protocol to be used with
pag - a VSAM data set.
With SMS only: profile-name: name of model profile Specifies a RACF profile

to be used for a new
data set.

SEGMENT=page-count
See page[12-176

page-count: number of pages of a
sysout data set

Specifies the number of
pages produced for the
current segment of the
sysout data set before
the data set is spun-off
for output processing.
(JES2 only)

For system assignment of space:
SPACE=({TRK, }
{cy,) [,
{blklgth,}
{reclgth,}

See page [12-177

(primary-qty [,second-qty] [,directory]) [,RLSE] [,CONTIG] [,ROUND])
1 [,index

1L TIL.mie]
[ALX]

[,]

To request specific tracks:

SPACE=(, (,,directory))

To request directory blocks (with SMS only):

SPACE= (ABSTR, (primary-qty,address [,directory]))
[,index

]

TRK: allocation in tracks

CYL: allocation in cylinders

blklgth: allocation in average blocks,
1 - 65535

reclgth: allocation in average
records (SMS)

primary-qty: number of tracks,
cylinders or blocks to be allocated

second-qty: additional tracks or
cylinders to be allocated, if
more are needed

directory: number of 256-byte
records for PDS directory

index: tracks or cylinders for index
of indexed sequential data set

RLSE: release unused space when
data set is closed

CONTIG: contiguous primary
allocation

MXIG: allocation in largest available
space (not supported for indexed
sequential data sets)

ALX: allocation of up to 5 separate
contiguous primary quantities

ROUND: allocation by block length
rounded to integral cylinders

ABSTR: allocation at the specified
address

address: track number of first track
to be allocated

Requests space for a
new data set on direct
access storage.

12-10 0S/390 V2R10.0 MVS JCL Reference

DD

KEYWORD PARAMETERS

VALUES

PURPOSE

SPIN= {UNALLOC}
{NO }

See page[12-186

UNALLOC: the data set is available for
printing immediately upon unallocation
NO: the data set is available for printing
at the end of the job

Specifies that the output
for a sysout data set is
available for printing
immediately upon
unallocation or at the
end of the job.

With SMS only:
STORCLAS=storage-class-name
See page[12-188

storage-class-name: installation-
defined name of a storage class

Specifies the storage
class for a new data set.

SUBSYS= (subsystem-name
([,subsystem-parameter]...)

See page[12-190

subsystem-name: identifies the
subsystem

subsystem-parameter: specifies
information for the subsystem

Requests a subsystem
to process this data set.

SYSOUT=cTass

SYSOUT=([class] [,writer-name] [,form-name])
[,INTRDR 1 [,code-name]
[, 1

SYSOUT=+

SYSOUT=(,)

See page[12-192

class:A-7Z,0-9

writer-name: 1 - 8 alphanumeric or
$, #, @ characters

form-name: 1 - 4 alphanumeric or
$, #, @ characters

code-name: 1 - 4 alphanumeric or
$, #, @ characters (JES2 only)

*: same output class as MSGCLASS
parameter on JOB statement

Defines this data set as
a sysout data set and
(1) assigns it to an
output class, (2)
requests external writer
to process it, (3)
identifies print or punch
forms, and (4) refers to
the code-name of a
JES2 /*OUTPUT
statement.

TERM=TS
See page|12-198

The TERM parameter
has no function in an
APPC scheduling
environment. In a
foreground job,indicates
that this data set is
coming from or going to
a TSO/E userid. In a
batch job, indicates that
this DD statement
begins an in-stream data
set.

UCS= {character-set-code }
{(character-set-code [,FOLD] [,VERIFY])}
{ [, 1 1

See page [12-199

character-set-code: 1 - 4 alpha-
numeric or $, #, @ characters

FOLD: operator load chain or train
in fold mode

VERIFY: operator verify UCS image

Specifies universal
character set, print train,
or character-
arrangement table for a
3800 Printing
Subsystem.

UNIT= ([ddd
[/ddd

] nit-count] [,DEFER])

]
[/dddd]

]

]

[device-type
[group-name

UNIT=AFF=ddname
See page |[12-202

device-number: 3-digit or 4-digit
hexadecimal number (/ required
before 4-digit number and
optional before 3-digit number)

device-type: machine type and model

group-name: 1 - 8 alphanumeric or
$, #, @ characters

unit-count: 1 - 59

P: allocate same number of devices
as volumes for parallel mount

DEFER: defers mounting until open

AFF=ddname: requests allocation
of same devices as for DD
statement ddname

Requests allocation to a
specific device, a type or
group of devices, or the
same device(s) as
another data set. Also
can specify how many
devices and deferred
mounting.

Chapter 12. DD Statement

12-11

DD

KEYWORD PARAMETERS VALUES PURPOSE

{voL }

See page [12-209

{VOLUME} = ([PRIVATE] [,RETAIN] [,volume-seq-no][,volume-count][,][SER=(serial-number[,serial-number]...)])
[, 110 1 [REF=dsname

]
]
[REF=+*.ddname]
[REF=*.stepname.ddname]
[REF=*.stepname.procstepname.ddname 1
[REF=*.procstepname.ddname]

PRIVATE: requests a private volume Identifies the volume(s)
RETAIN: requests private tape on which a data set
volume remain mounted and resides or will reside.

unwound or requests public tape
volume be retained at device
volume-seqg-no: begins processing
with volume 1 - 255 of existing
multivolume data set
volume-count: maximum volumes
for output data set (1 - 255)

serial-number subparameters (1 - 255):
volume serial numbers (1 - 6
alphanumeric, $, #, @, or
special characters)

REF: copy volume serial numbers
from another data set or earlier
DD statement, or copy storage
class for SMS-managed data sets

dsname: from cataloged or passed
data set

ddname: from named earlier DD
statement

stepname: DD in named step

procstepname: step in named
procedure

Comments Field

The comments field follows the parameter field after at least one intervening blank.
If you do not code any parameters on a DD statement, do not code any comments.

Location in the JCL

Most DD statements define data sets to be used in a job step, in a cataloged
procedure step, or in an in-stream procedure step; these appear after the EXEC
statement for the step. Some DD statements define data sets for the job, for
example, the JOBLIB DD statement; these appear after the JOB statement and
before the first EXEC statement.

When Overriding or Adding to Procedures

Place DD statements that override, nullify, or add parameters immediately following
the EXEC statement that calls the procedure. Place overriding and nullifying DD
statements first, followed by all added DD statements. Last in the calling step are
any DD * or DD DATA statements with their in-stream data.

To override more than one DD statement in a procedure, place the overriding DD
statements in the same order as the overridden DD statements in the procedure.

12-12 0S/390 V2R10.0 MVS JCL Reference

DD

Concatenating Data Sets

You can logically connect or concatenate sequential or partitioned (PDSs or
PDSESs) input data sets for the duration of a job step. Each of the concatenated
data sets can reside on a different volume. For details on concatenating data sets,
see|0S/390 DFSMS: Using Data Setd Note that you cannot concatenate output
data sets.

When data sets are concatenated, they are treated as having like attributes, and
the system obtains these attributes, except for block size, from the first data set in
the concatenation.

Coding a Concatenation

To concatenate data sets, omit the ddnames from all the DD statements except the
first in the sequence. The data sets are processed in the same sequence as the
DD statements defining them.

Devices for Concatenated Data Sets

Concatenated data sets can reside on different devices and different types of
devices. (This may require internal DCB modifications, see [0S/390 DFSMS: Using|
[Data Setd)

Block Sizes for Concatenated Data Sets

Concatenated data sets can have different block sizes. In a few cases, the data set
with the largest block size must appear first in the concatenation. (Note that you
can state a value equal to the largest block size for BLKSIZE on the first DD
statement, regardless of what the actual block size of this data set is.) Certain data
sets can be concatenated in any order of block size; these are:

e Partitioned data sets (PDSs), and partitioned data sets extended (PDSEs)
without member names coded on the DD statements.

e Sequential data sets that are DASD-resident, tape-resident, or in-stream are
accessed by QSAM and use system-created buffers.

For these data sets, the BLKSIZE obtained is the largest in the concatenation. Note
that this block size can cause invalid attribute combinations when combined with
the attributes obtained from the first data set in the concatenation.

If you do not specify a block size, the system can, under certain conditions,
determine an optimum block size. For detailed information about
system-determined block size, see|0S/390 DFSMS: Using Data Sets,

Logical Record Lengths for Concatenated Data Sets

Concatenated data sets with format-V records can have different logical record
lengths as long as the data set with the largest logical record length appears first in
the concatenation. (Note that you can state a value equal to the largest logical
record length for LRECL on the first DD statement, regardless of what the actual
logical record length of this data set is.)

Chapter 12. DD Statement 12-13

DD

References to Concatenated Data Sets

If you make a backward reference to a concatenation (using *.), the system
obtains information only from the first data set defined in the sequence of DD
statements.

If you make a forward reference to a concatenation (using the DDNAME
parameter), the forward reference resolves to the first data set in the concatenation.
If there are no DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
first data set in the concatenation. The following example illustrates this.

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=+
//SYSUT1 DD DDNAME=INPUT

//INPUT DD DSN=TSTDATA1,DISP=SHR
/l DD DSN=TSTDATAZ,DISP=SHR
//SYSUT2 DD SYSOUT=+

//SYSIN DD DUMMY

In this example, SYSUT1 will resolve to the first data set, TSTDATA1, defined by
the DDNAME forward reference INPUT. TSTDATA2, the second data set in the
DDNAME forward reference INPUT, will be appended to SYSUT1 as well.
IEBGENER will recognize TSTDATA1 and TSTDATAZ as input.

If there are any DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
last DD statement preceding the concatenation. For example:

//STEP1 EXEC PGM=IEBGENER
//SYSUT1 DD DDNAME=INPUT
//SYSPRINT DD SYSOUT=+
//SYSUT2 DD SYSOUT==

//INPUT DD DSN=TSTDATA1l,DISP=SHR
// DD DSN=TSTDATAZ,DISP=SHR
//SYSIN DD DUMMY

In the preceding example, SYSUT1 will resolve to the first data set, TSTDATAT,
defined in the DDNAME forward reference INPUT. TSTDATA2 will be appended to
SYSUT2, the last DD statement preceding the concatenation. In this example,
IEBGENER will recognize only TSTDATA1 as input.

If a concatenated DD is added to a procedure, the remaining concatenated
datasets will be concatenated to the last DD in the step named in an override or
addition (or to the first step if no step was named in an override or addition). Note
that this may result in these concatenated DDs being added to an unexpected DD.
The following example illustrates this.

12-14 0S/390 V2R10.0 MVS JCL Reference

DD

//TPROC PROC

//S1 EXEC PGM=IEFBR14

//DD1 DD DDNAME=INPUT

//DD2 DD DSN=MYDSN2,DISP=SHR
//DD3 DD DSN=MYDSN3,DISP=SHR
/752 EXEC PGM=IEFBR14

/ /DDA DD DDNAME=INPUT

//DDB DD DSN=MINEZ,DISP=SHR
//bDC DD DSN=MINE3,DISP=SHR
/l PEND

//STEP1 EXEC TPROC

//INPUT DD DSN=MYDSN1,DISP=SHR
/1l DD DSN=MYDSN4,DISP=SHR
//S2.INPUT DD DSN=MINE1,DISP=SHR
/l DD DSN=MINE4,DISP=SHR

In this example, the result of the DDNAME forward reference INPUT is:

e In step S1, DD1 resolves to data set MYDSN1 and data set MYDSN4 is
concatenated to data set MYDSNS3.

e In step S2, DDA resolves to data set MINE1 and data set MINE4 is
concatenated to data set MINES.

Do Not Concatenate Data Sets to a DUMMY Data Set

If you define a data set using the DUMMY parameter, do not concatenate other
data sets to it. When the processing program asks to read a dummy data set, the
system takes an end-of-data set exit immediately and ignores any data set that
might be concatenated to the dummy.

Do Not Code Other Statements Between Concatenated DD
Statements

Do not code other types of statements between two or more concatenated data
definition (DD) statements. (Comments are the only exception; you can code them
between DD statements.) For example, do not code a SET statement as follows:

//bD1 DD DSN=A

// DD DSN=B

// SET

/1% Wrong!!! SET statement not allowed (this comment IS allowed)
// DD DSN=C

Examples of DD Statements and ddnames
Example 1

//MYDS DD DSNAME=REPORT
//A DD DSNAME=FILE

Example 2

//INPUT DD DSNAME=FGLIB,DISP=(OLD,PASS)
// DD DSNAME=GROUP2,DISP=SHR

In this example, because the ddname is missing from the second DD statement,
the system concatenates the data sets defined in these statements.

Example 3

Chapter 12. DD Statement 12-15

DD: *

//PAYROLL.DAY DD DSNAME=DESK,DISP=SHR

In this example, if procedure step PAYROLL contains a DD statement named DAY,
this statement overrides parameters on DD statement DAY. If the step does not
contain DD statement DAY, the system adds this statement to procedure step
PAYROLL for the duration of the job step.

Example 4
//STEPSIX.DD4 DD DSNAME=TEXT,DISP=(NEW,PASS)
/l DD DSNAME=ART,DISP=SHR

In this example, the second data set is concatenated to the first, and both are
added to procedure step STEPSIX. The ddname is omitted from the second DD
statement in order to concatenate data set ART to data set TEXT.

Because the system does not allow you to write to a concatenation of data, you
need another data set with DISP=OLD in order to read from TEXT. Write to the
new DD name before reading from DDA4.

* Parameter

Parameter Type
Positional, optional
Purpose

Use the * parameter to begin an in-stream data set. The data records immediately
follow the DD * statement; the records may be in any code such as EBCDIC. The
data records end when one of the following is found:

/* in the input stream

// to indicate another JCL statement

The two-character delimiter specified by a DLM parameter on this DD
statement

The input stream runs out of card images

Use a DATA parameter instead of the * parameter if any of the data records start
with //.

Considerations for an APPC Scheduling Environment

The * parameter has no function in an APPC scheduling environment. If you code
*, the system will check it for syntax and ignore it.

Syntax

//ddname DD =[,parameter]... [comments]

12-16 0S/390 V2R10.0 MVS JCL Reference

DD: *

Defaults
JES uses a default of 80 for LRECL and BLKSIZE. For JES2 only, if RECFM=V,
JES2 uses a default of 84 for LRECL and 88 for BLKSIZE.

Note: If the input stream is from NJE, JES uses the size specified at the sending
node.

Relationship to Other Parameters

The following DD parameters may be specified with the DD * and DD DATA
parameters. All other parameters are either ignored or result in a JCL error.

DCB=BLKSIZE DSNAME
DCB=BUFNO LIKE
DCB=LRECL LRECL
DCB=DIAGNS REFDD
DCB=MODE=C VOLUME=SER
DLM DSID

Restriction When Coding LRECL

If you code LRECL with the * parameter, you cannot submit a data set to JES3 with
a record length of greater than 80 bytes.

You cannot use the TSO/E SUBMIT command to submit a data set to JES2 or
JES3 with a record length of greater than 80 bytes.

You can submit a data set to JES2 or JES3 with a record length of greater than 80
bytes by submitting the JCL that follows. In this example JCL,
IBMUSER.LONGDATA.JCL contains the data with a record length of greater than

80 bytes.
//SUBMIT JOB
//S1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT2 DD SYSOUT=(, INTRDR)

//SYSUT1 DD DSN=IBMUSER.LONGDATA.JCL,DISP=SHR

In a JES3 system, the record length limit is the size of the installation-defined spool
buffer, minus 44. (For example, if the buffer size is 4084, the record length limit is
4040.) JES3 fails any job that exceeds this limit.

If the records longer than 80 bytes include JCL to be transmitted to a remote
system using JES3 // XMIT or //*ROUTE XEQ, or JES2 /+*ROUTE XEQ or /*XMIT with
JES3 in the network, the records are truncated to 80 bytes.

For JES3 SNA RJP Input

e The only parameters you can specify for JES3 systems network architecture
(SNA) remote job processing (RJP) input devices are BLKSIZE and LRECL.

¢ Code DCB=LRECL=nn; where nnn is 1 to 255 when SYSIN data records are
greater than 80 bytes. (The default LRECL is 80 bytes.)

For 3540 Diskette Input/Output Units

Chapter 12. DD Statement 12-17

DD: *

VOLUME=SER, BUFNO, and DSID on a DD * statement are ignored except when
they are detected by a diskette reader as a request for an associated data set. See
3540 Programmer's Reference. On a DD * or DD DATA statement processed by a
diskette reader, you can specify DSID and VOLUME=SER parameters to indicate
that a diskette data set is to be merged into the input stream following the DD
statement.

Relationship to Other Control Statements

Do not refer to an earlier DD * statement in DCB, DSNAME, or VOLUME
parameters on following DD statements.

Location in the JCL

A DD * statement begins an in-stream data set.
In-stream Data for Cataloged or In-stream Procedures

A cataloged or in-stream procedure cannot contain a DD * statement. When you
call a procedure, you can add input stream data to a procedure step by placing in
the calling step one or more DD * or DD DATA statements, each followed by data.

Multiple In-Stream Data Sets for a Step

You can code more than one DD * or DD DATA statement in a job step in order to
include several distinct groups of data for the processing program. Precede each
group with a DD * or DD DATA statement and follow each group with a delimiter
statement. If you omit a DD statement before the input data, the system provides a
DD * statement with the ddname of SYSIN. If you omit a delimiter after input data,
the system ends the data when it reads a JCL statement or runs out of card
images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the
system skips the remaining data without abnormally terminating the step.

Examples of the * Parameter
Example 1

//INPUT1 DD =

data

//INPUT2 DD =

data
/*
This example defines two groups of data in the input stream.

Example 2

12-18 0S/390 V2R10.0 MVS JCL Reference

DD: ACCODE

//INPUT3 DD *,DSNAME=&&INP3
éata
/*
This example defines an in-stream data set with INP3 as the last qualifier of the

system-generated data set name. A name such as
userid.jobname.jobid.Ddsnumber.INP3 is generated.

Example 3

//STEP2 EXEC PROC=FRESH
//SETUP . WORK DD UNIT=3400-6,LABEL=(,NSL)
//SETUP.INPUTL DD =*

data

/*
//PRINT.FRM DD UNIT=180
//PRINT.INP DD *

data
/*

This example defines two groups of data in the input stream. The input data
defined by DD statement SETUP.INPUT1 is to be used by the cataloged procedure
step named SETUP. The input data defined by DD statement PRINT.INP is to be
used by the cataloged procedure step named PRINT.

ACCODE Parameter

Parameter Type
Keyword, optional
Purpose

Use the ACCODE parameter to specify or change an accessibility code for an
ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape output data set. An
installation-written file-access exit routine verifies the code after the code is written
to tape. If the code is authorized, the job step’s program can use the data set; if
not, the system issues messages and may abnormally terminate the job step.

A data set protected by an accessibility code should reside only on a volume
protected by RACF or a volume accessibility code. The volume should not contain
any unprotected data sets.

Note: ACCODE is supported only for ISO/ANSI/FIPS Version 3 and ISO/ANSI
Version 4 tape data sets. ACCODE is ignored for all label types except AL
and AUL label tapes.

References

Chapter 12. DD Statement 12-19

DD: ACCODE

Syntax

For more information on ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 tape

data sets, see [0S/390 DFSMS: Using Magnetic Tapes| Also[0S/390 DFSMS|

|Access Method Services for Catalogd.

ACCODE=access-code

Subparameter Definition

Defaults

Overrides

access-code
Specifies an accessibility code. The access code is 1 through 8 characters. In
ISO/ANSI/FIPS Version 3 the first character must be an upper case letter from
A through Z. In ISO/ANSI Version 4 the first character must be an upper case
letter from A to Z, number from 0 to 9, or one of the special characters ! * " % '
()+,-./:;<=>7?and _.

Enclose the ACCODE in apostrophes if you specify special characters. For
example, ACCODE='AB/CD'. Specify two apostrophes if you include an
apostrophe as a special character. For example, to specify DAY'SEND, use
ACCODE='DAY"SEND'".

Note: ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 use only the first
character as the accessibility code; the installation can use the other
seven characters. If the first character is other than those allowed, the
installation does not give control to the file-access exit routine.

If you do not specify an accessibility code on a DD statement that defines an
ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape data set, the system writes
an ASCII blank character (X'20') in the tape label. A blank authorizes unlimited
access to the tape's data sets unless access is limited by RACF data set
protection.

If the installation does not supply a file-access exit routine, the system prevents
access to any ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape volume.

If PASSWORD or NOPWREAD is coded on the DD statement LABEL parameter,
password access overrides the ACCODE parameter.

Example of the ACCODE Parameter

//TAPE DD UNIT=2400,VOLUME=SER=T49850,DSNAME=TAPEDS,
/l LABEL=(,AL) ,ACCODE=Z

In this example, the DD statement ACCODE parameter specifies an accessibility
code of Z for tape volume T49850. The volume has ISO/ANSI/FIPS Version 3 or
ISO/ANSI Version 4 labels. The data set TAPEDS is first on the tape.

12-20 0S/390 V2R10.0 MVS JCL Reference

DD: AMP

AMP Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the AMP parameter to complete information in an access method control block
(ACB) for a VSAM data set. The ACB is a control block for entry-sequenced,
key-sequenced, and relative record data sets.

AMP is supported only for VSAM data sets.

Note: With SMS, you can create new VSAM data sets with JCL DD statements.
See the DATACLAS parameter (described on page|12-48) and the
RECORG parameter (described on page [12-167).

References

For more information about VSAM data sets, see [0S/390 DFSMS: Using Datd

[Sets, [0S/390 DFSMS Macro Instructions for Data Sets, and |0S/390 MVS JCL|

[User's Guidd

Chapter 12. DD Statement 12-21

DD: AMP

AMP=(subparameter)
AMP=("'subparameter[,subparameter]...")
AMP="'subparameter[,subparameter]...'

The subparameters are:

AMORG
BUFND=number
BUFNI=number
BUFSP=number
CROPS= [NCK]
[NRC]
[NRE]
[RCK]

OPTCD= {I }

RECFM= [F]
[FB]
[v]
[VB]
STRNO=number
SYNAD=module
TRACE=(subparameter[,subparameter]...)

ACCBIAS=[USER]

[SYSTEM]
(o]
(oW]
[so]
[Sw]

SMBDFR= {Y | N}

SMBHWT= nn

SMBVSP= {nnK | nnM}

RMODE31=[ALL]
[BUFF]

[cs 1
[None]

Parentheses: Parentheses are required only when you are continuing the statement.

Multiple Subparameters: When the parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in apostrophes inside the
parentheses. For example, AMP=(' AMORG,STRNO=4").

Null Positional Subparameters: Null positions in the AMP parameter are invalid.

Special Characters: When the parameter contains only one subparameter and that subparameter
contains special characters, enclose the subparameter in apostrophes inside the parentheses. For
example, AMP=('STRNO=4").

Note: Do not enclose a subparameter in a subparameter list in apostrophes.

If you code a symbolic parameter on the AMP parameter, you can code the symbolic parameter in
apostrophes.

12-22 0S/390 V2R10.0 MVS JCL Reference

DD: AMP

Continuation onto Another Statement: Enclose the subparameter list in only
one set of parentheses. Enclose all the subparameters on each statement in
apostrophes. End each statement with a comma after a complete
subparameter. For example:

//DS1 DD DSNAME=VSAMDATA,AMP=("'BUFSP=200,0PTCD=IL,RECFM=FB',
// "STRNO=6")

Subparameter Definition

AMORG
Indicates that the DD statement describes a VSAM data set. Code AMORG for
either of the following reasons:

e When data set access is through an ISAM interface program and the DD
statement contains VOLUME and UNIT parameters or contains a DUMMY
parameter.

e To open an ACB for a VSAM data set, if the data set is not fully defined at
the beginning of the job step.

Note: Avoid coding AMP=AMORG for a new data set that is
SMS-managed. SMS data sets are cataloged at allocation; all
information pertaining to the data set creation (such as RECORG)
must be fully defined at allocation to ensure the success of the job.

BUFND=number
Specifies the number of 1/O buffers that VSAM is to use for data records. The
minimum is 1 plus the STRNO subparameter number. This value overrides the
BUFND value specified in the ACB or GENCB macro, or provides a value if
one is not specified. If you omit STRNO, BUFND must be at least 2.

If you omit BUFND from AMP and from the ACB macro instruction, the system
uses the STRNO number plus 1.

BUFNI=number
Specifies the number of I/0O buffers that VSAM is to use for index records. This
value overrides the BUFNI value specified in the ACB or GENCB macro, or
provides a value if one is not specified. If you omit BUFNI from AMP and from
the ACB macro instruction, VSAM uses as many index buffers as the STRNO
subparameter number; if you omit both BUFNI and STRNO, VSAM uses 1
index buffer.

If data access is through the ISAM interface program, specify for the BUFNI
number 1 more than the STRNO number, or specify 2 if you omit STRNO, to
simulate having the highest level of an ISAM index resident. Specify a BUFNI
number 2 or more greater than the STRNO number to simulate having
intermediate levels of the index resident.

BUFSP=number
Specifies the maximum number of bytes for the data and index buffers in the
user area. This value overrides the BUFSP value specified in the ACB or
GENCB macro, or provides a value if one is not specified.

Chapter 12. DD Statement 12-23

DD: AMP

If BUFSP specifies fewer bytes than the BUFFERSPACE parameter of the
access method services DEFINE command, the BUFFERSPACE number
overrides the BUFSP number.

CROPS=NCK
CROPS=NRC
CROPS=NRE
CROPS=RCK

Requests a checkpoint/restart option. For more information, see [0S/390
[DFSMS _Checkpoint/Restart

NCK
Requests no data set post-checkpoint modification tests.

NRC
Requests neither a data-erase test nor data set post-checkpoint
modification tests.

NRE
Requests no data-erase test.

RCK
Requests a data-erase test and data set post-checkpoint modification tests.
If the CROPS subparameter is omitted, RCK is the default.

If you request an inappropriate option, such as the data-erase test for an input
data set, the system ignores the option.

OPTCD=I
OPTCD=L
OPTCD=IL

Indicates how the ISAM interface program is to process records that the step’s
processing program flags for deletion.

I Requests, when the data control block (DCB) contains OPTCD=L, that the
ISAM interface program is not to write into the data set records marked for
deletion by the processing program.

If AMP=('OPTCD-=I") is specified without OPTCD=L in the DCB, the
system ignores deletion flags on records.

L Requests that the ISAM interface program is to keep in the data set
records marked for deletion by the processing program.

If records marked for deletion are to be kept but OPTCD=L is not in the
DCB, AMP=('OPTCD=L") is required.

Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM
job control language, you should code it in the AMP parameter.

IL Requests that the ISAM interface program is not to write into the data set
records marked for deletion by the processing program. If the processing
program had read the record for update, the ISAM interface program
deletes the record from the data set.

AMP=('OPTCD-=IL") has the same effect as AMP=('OPTCD=I") coded
with OPTCD-=L in the DCB.

12-24 0S/390 V2R10.0 MVS JCL Reference

DD: AMP

RECFM=F
RECFM=FB
RECFM=V
RECFM=VB
(For data sets with SMS, see the DD RECFM parameter described on page

[r2-164))

Identifies the ISAM record format used by the processing program. You must
code this RECFM subparameter when the record format is not specified in the
DCB.

Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM job
control language, you should code it in the AMP parameter.

All VSAM requests are for unblocked records. If the processing program
requests blocked records, the ISAM interface program sets the overflow-record
indicator for each record to indicate that each is being passed to the program
unblocked.

F Indicates fixed-length records.

FB
Indicates blocked fixed-length records.

V Indicates variable-length records. If no RECFM is specified in the AMP
parameter or in the DCB, V is the default.

VB
Indicates blocked variable-length records.

STRNO=number
Indicates the number of request parameter lists the processing program uses
concurrently. The number must at least equal the number of BISAM and
QISAM requests that the program can issue concurrently. If the program
creates subtasks, add together the number of requests for each subtask plus 1
for each subtask that sequentially processes the data set. This value overrides
the STRNO value specified in the ACB or GENCB macro, or provides a value if
one is not specified.

SYNAD=module
Names a SYNAD exit routine. The ISAM interface program is to load and exit
to this routine if a physical or logical error occurs when the processing program
is gaining access to the data set.

The SYNAD parameter overrides a SYNAD exit routine specified in the EXLST
or GENCB macro instruction that generates the exit list. The address of the
intended exit list is specified in the access method control block that links this
DD statement to the processing program. If no SYNAD exit is specified, the
system ignores the AMP SYNAD parameter.

TRACE=(subparameter[,subparameter]...)
Indicates that the generalized trace facility (GTF) executes with your job to
gather information about the opening, closing, and end-of-volume processing
for the data set defined on this DD statement. You can use the interactive
problem control system to print the trace output; see[05/390 MVS IPCS User'd

Chapter 12. DD Statement 12-25

DD: AMP

The TRACE subparameters are: HOOK, ECODE, KEY, PARM1, and PARM2.
See [0S5/390 DFSMS: Using Data Sets| for full information on the TRACE
subparameter and the VSAM trace facility, which you use to obtain diagnostic
information during VSAM processing.

ACCBIAS=USER
ACCBIAS=SYSTEM
ACCBIAS=DO
ACCBIAS=DW
ACCBIAS=SO
ACCBIAS=SW

Specify one of these six values to override record access bias in the data class
in order to use System-Managed Buffering (SMB) without changing the data
class. See OFSMS/MVS Using Data Sets for details on System-Managed
Buffering.

USER
Obtain buffers the same way the system would without SMB. This is the
default if you code no specification for the ACCBIAS subparameter.

SYSTEM
Force SMB and let the system determine the buffering technique based on
the ACB MACRF and storage class specification.

Note: USER and SYSTEM are the only values you may use to specify
record access bias in the data class.

DO
SMB with direct optimization.

DW
SMB weighted for direct processing.

This option provides the capability to use hiperspace.

SO
SMB with sequential optimization.

sSw
SMB weighted for sequential processing.

SMBDFR=Y or SMBDFR=N

With direct optimization, use this subparameter to instruct VSAM whether to
defer writing of changed buffers to the medium until either the data set is
closed or the buffers are required for some other request. See OFSMS/MVS
Using Data Sets for further details on using SMBDFR.

SMBHWT=nn

Specify a requirement for hiperspace where nn is an integer from 0 to 99. Use
this parameter with direct optimization. The default value is 0, which means that
the system does not obtain any hiperspace.

SMBVSP=nnK or SMBVSP=nnM

Specify the amount of virtual buffer space to acquire for direct optimized
processing when opening the data set, where nn is 1 to 2048000 kilobytes or 1
to 2048 megabytes.

12-26 0S/390 V2R10.0 MVS JCL Reference

DD: AMP

RMODE31=ALL
RMODE31=BUFF
RMODE31=CB
RMODE31=NONE
Designate the residency for buffers and control blocks.

This subparameter allows you to specify whether or not to allocate the buffers
and control blocks in 31-bit addressable storage. You can use this field
independently of SMB. With SMB the default location is in 31-bit addressable
storage ("above the 16-megabyte line"). Without SMB, the default is in 24-bit
addressable storage ("below the line").

The values you may specify for RMODE31 are:

ALL —Control blocks and buffers above the line.

BUFF —Buffers (only) above the line.

CB —Control blocks (only) above the line.

NONE —Control blocks and buffers below the line.

When you do not specify ACCBIAS, or when you specify ACCBIAS=USER, if

you specify nothing for RMODES1 in either the JCL or the ACB, the system
obtains the buffers and control blocks in virtual storage with a 24-bit address.

When ACCBIAS=SYSTEM, if you specify nothing for RMODES31 in either the
JCL or the ACB, the system obtains the buffers in storage with an address
greater than 16 million bytes.

When you specify CB or NONE for RMODE31, the system obtains the buffers
in 24-bit addressable storage.

When you specify BUFF or NONE for RMODE31, the system obtains the
control blocks in 24-bit addressable storage.

If your program runs in 24-bit mode and you use locate mode processing for
the VSAM data set, you must obtain the buffers in 24-bit addressable storage.

Note: If your program runs with local or global shared resources (LSR/GSR)
and uses journaling (JRNAD) or user processing (UPAD) exit routines,
the exits must run in 31-bit mode if you obtained the control blocks
above the line.

This capability to allocate above the line is necessary when either or both of
the following conditions exists:

* The number of data sets open to a job is quite large.

e The number of buffers is such as to cause a storage shortage if kept in
24-bit addressable storage.

You may specify RMODES31 only with the JCL DD AMP parameter or in the
ACB. The RMODES31 subparameter of AMP overrides any RMODE31 values
specified in the ACB.

The RMODES1 subparameter is available for all data set types.

Chapter 12. DD Statement 12-27

DD: AMP

Relationship to Other Parameters

Do not code the following parameters with the AMP parameter.

* DDNAME RECFM
BURST DYNAM SUBSYS
CHARS FCB SYSOUT
COPIES FLASH TERM
DATA MODIFY ucs
DCB QNAME

Invalid ddnames

The following ddnames are invalid for VSAM data sets:

JOBLIB
STEPLIB
SYSABEND
SYSCHK
SYSCKEOQOV
SYSMDUMP
SYSUDUMP

Invalid DSNAMEs

When you code the AMP parameter, the DSNAME must not contain parentheses, a
minus (hyphen), or a plus (+) sign. The forms of DSNAME valid for ISAM,
partitioned access method (PAM), and generation data groups (GDG) are invalid
with VSAM data sets.

Buffer Requirements

For a key-sequenced data set, the total minimum buffer requirement is three: two
data buffers and one index buffer. For an entry-sequenced data set, two data
buffers are required.

If the number of buffers specified in the BUFND and BUFNI subparameters causes
the virtual storage requirements to exceed the BUFSP space, the number of buffers
is reduced to fit in the BUFSP space.

If BUFSP specifies more space than required by BUFND and BUFNI, the number
of buffers is increased to fill the BUFSP space.

Examples of the AMP Parameter

Example 1
//VSAMDS1 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=("'BUFSP=200,BUFND=2",
/l 'BUFNI=3,STRNO=4,SYNAD=ERROR")

In this example, the DD statement defines the size of the user area for data and
index buffers, specifies the number of data and index buffers, specifies the number
of requests that require concurrent data set positioning, and specifies an error exit
routine named ERROR.

Example 2

//VSAMDS2 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=('BUFSP=23456,BUFND=5",
// '"BUFNI=10,STRNO=6,SYNAD=ERROR2,CROPS=NCK",

// 'TRACE=(PARM1=F00203000010,KEY=ABCDEF) ')

12-28 0S/390 V2R10.0 MVS JCL Reference

DD: AVGREC

In this example, the DD statement defines the values for BUFSP, BUFNI, STRNO,
and SYNAD, as in the previous example. It also specifies that a data set
post-checkpoint modification test is not to be performed when restarting at a
checkpoint and that GTF is to provide a trace of specified data areas.

AVGREC Parameter

Syntax

Parameter Type
Keyword, optional — use this parameter only with SMS
Purpose

Use the AVGREC parameter when you define a new data set to specify that:
* The units of allocation requested for storage space are records.

e The primary and secondary space quantity specified on the SPACE parameter
represents units, thousands, or millions of records.

When you use AVGREC with the SPACE parameter, the first subparameter
(reclgth) on the SPACE parameter must specify the average record length of the
records.

Code the AVGREC parameter when you want to (1) specify records as the units of
allocation or (2) override the space allocation defined in the data class for the data
set.

If SMS is not installed or is not active, the system syntax checks and then ignores
the AVGREC parameter.

AVGREC= {U}
{K}
{m}

Subparameter Definition

U Specifies a record request and that the primary and secondary space quantity
specified on the SPACE parameter represents the number of records in units
(multiplier of 1).

K Specifies a record request and that the primary and secondary space quantity
specified on the SPACE parameter represents the number of records in
thousands (multiplier of 1024).

M Specifies a record request and that the primary and secondary space quantity
specified on the SPACE parameter represents the number of records in millions
(multiplier of 1048576).

Chapter 12. DD Statement 12-29

DD: BLKSIZE

Overrides

AVGREC overrides the space allocation defined in the DATACLAS parameter for
the data set. See [‘Overrides” on page 12-50|

Relationship to Other Parameters

Do not code AVGREC with the TRK, CYL, or ABSTR subparameters of the SPACE
parameter.

Do not code the following DD parameters with the AVGREC parameter.

* DYNAM
DATA QNAME
DDNAME

Examples of the AVGREC Parameter

Example 1
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=DCLAS03,DISP=(NEW,KEEP),
// SPACE=(128,(5,2)) ,AVGREC=K

In the example, the space allocation defined in the DCLASO03 data class is
overridden by the SPACE and AVGREC parameters, which indicate an average
record length of 128 bytes, a primary quantity of 5K (5,120) records, and a
secondary quantity of 2K (2,048) records.

Example 2
//SMSDS3A DD DSNAME=MYDS3.PGM,DATACLAS=DCLASO3A,DISP=(NEW,KEEP),
/l AVGREC=K

In the example, the space allocation defined in the DCLASO03A data class is
overridden by the AVGREC parameter, which indicates that the primary and
secondary quantity represents thousands of records.

BLKSIZE Parameter

Parameter Type
Keyword, optional
Purpose

Code the BLKSIZE parameter to specify the maximum length of a block.

Syntax

BLKSIZE= {value}
valuek}
valueM}

valueG}

12-30 0S/390 V2R10.0 MVS JCL Reference

DD: BLKSIZE

Subparameter Definition

Defaults

Overrides

value
Specifies the maximum length, in bytes, of a block.

The number of bytes that you specify for BLKSIZE depends on the device type
and the record format for the data set. The maximum is 32760 for DASD data
sets and 2,147,483,648 for tape, except for data sets on magnetic tape with
ISO/ANSI/FIPS labels, where the minimum value for BLKSIZE is 18 bytes and
the maximum is 2048 bytes. To allow a block size greater than 2048, use
installation exit routine IFG0193G, described in [0S/390 DFSMS Installation

valueK
Specifies the maximum length, in kilobytes, of a block. (1 kilobyte = 1024
bytes.) The maximum is 2097152. If you code 2097152K, the blocksize is the
maximum; 2,147,483,648 bytes.

valueM
Specifies the maximum length, in megabytes, of a block. (1 megabyte = 1024
kilobytes.) The maximum is 2048. If you code 2048M, the block size is the
maximum; 2,147,483,648 bytes.

valueG
Specifies the maximum length, in gigabytes, of a block. (1 gigabyte = 1024
megabytes.) The maximum is 2G. If you code 2G, the blocksize assigned is the
maximum; 2,147,483,648 bytes.

If you do not code BLKSIZE, the system can, under certain conditions, determine
an optimum block size. For detailed information about system-determined block
size, see |0S/390 DFSMS: Using Data Sets,

If you code the BLKSIZE subparameter on a DCB macro instruction or on a DD
statement that defines an existing data set with standard labels, the DCB BLKSIZE
overrides the block size specified in the label.

Relationship to Other Control Statements

Do not code the BLKSIZE parameter with the DCB subparameter BUFSIZE.

If you code BLKSIZE it will have no effect on EXCP processing unless the
application takes special steps to use it.

Examples of the BLKSIZE Parameter

//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP) ,UNIT=3380,
// RECFM=FB,LRECL=326,BLKSIZE=23472,
// SPACE=(23472,(200,40))

DD statement DD1B defines a new data set named EVER on a 3380. The DD
keywords RECFM, LRECL, and BLKSIZE contain the information necessary to
complete the data control block.

//DD2B DD DSNAME=NEVER,DISP=(NEW,KEEP) ,UNIT=3590,
/!l RECFM=FB, LRECL=326,BLKSIZE=404K

Chapter 12. DD Statement 12-31

DD: BLKSZLIM

DD statement DD2B defines a new data set named NEVER on a 3590. The DD
keywords RECFM, LRECL, and BLKSIZE contain the information necessary to
complete the data control block.

BLKSZLIM Parameter

Syntax

Keyword, optional
Purpose

Use the BLKSZLIM parameter to specify an upper limit on a data set's block size if
BLKSIZE is omitted from all sources and the system determines the block size for
the data set. If a BLKSIZE value is available from any source (such as the DD
statement, data set label, or the program), then the block size limit has no effect.
The BLKSZLIM parameter is useful mainly when writing new magnetic tape data
sets with programs that can handle blocks longer than 32760 bytes. Currently the
maximum block size supported on any tape is 256 KB. You can safely code a
larger value for BLKSZLIM. The BLKSZLIM value never has to be a multiple of the
LRECL value. For more information, see |05/390 DFSMS: Using Data Sets|

BLKSZLIM= {value
{valuek
{valueM
{valueG

}
}
}
}

Subparameter Definition

Defaults

value
Specifies in bytes an upper limit on a data sets's block size if BLKSIZE is
omitted from all sources and the system-determines the block size for the data
set. The maximum value is 256 KB.

valueK
Specifies the block size limit in kilobytes (units of 1024). The maximum value is
2097152K (two gigabytes). The minimum value is 32K.

valueM
Specifies the block size limit in megabytes (units of 1024K). The maximum
value is 2048M (two gigabytes). The minimum value is 1M.

valueG
Specifies the block size limit in gigabytes (units of 1024M). The maximum
allowable value is 2G (two gigabytes). The minimum value is 1G.

There is no default for BLKSZLIM. If you omit BLKSZLIM, system-determined block
size processing determines the block size from one of the following sources,
starting with the first:

1. Data class
2. DEVSUPxx value
3. 32760

12-32 0S/390 V2R10.0 MVS JCL Reference

DD: BURST

| Relationship to Other Parameters

BLKSZLIM is ignored when BLKSIZE is specified.

Example of the BLKSZLIM Parameter

//DD1BB DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3390,
// RECFM=FB,LRECL=326,BLKSZLIM=32760,
// SPACE=(23472,(200,40))

DD statement DD1B defines a new data set named EVER on a 3390 DASD. The
DD keywords RECFM and LRECL contain the information necessary to complete
the data control block. BLKSZLIM places an upper limit on the block size to be
determined by the system.

//DD2B DD DSNAME=NEVER,DISP=(NEW,KEEP),UNIT=3590,
// RECFM=FB,LRECL=80,BLKSZLIM=40K,

DD statement DD2B defines a new data set named NEVER on a 3590 TAPE
device. The DD keywords RECFM and LRECL contain the information necessary
to complete the data control block. BLKSZLIM places an upper limit on the block
size to be determined by the system.

BURST Parameter

Syntax

Keyword, optional
Purpose
Use the BURST parameter to specify that the output for this sysout data set printed
on a 3800 Printing Subsystem is to go to:
e The burster-trimmer-stacker, to be burst into separate sheets.

¢ The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was
not previously requested, JES issues a message to the operator to thread the
paper into the required stacker.

Note: BURST applies only for an output data set printed on a 3800 equipped with
a burster-trimmer-stacker.

BURST=

Subparameter Definition

YES
Requests that the printed output is to be burst into separate sheets. This
subparameter can also be coded as Y.

NO
Requests that the printed output is to be in a continuous fanfold. This
subparameter can also be coded as N.

Chapter 12. DD Statement 12-33

DD: CCSID

Defaults

Overrides

If you do not code a BURST parameter, but you code a DD SYSOUT parameter
and the sysout data set is printed on a 3800 that has a burster-trimmer-stacker,
JES uses an installation default specified at initialization.

If you do not code a BURST parameter or a DD SYSOUT parameter, the default is
NO.

A BURST parameter on a sysout DD statement overrides an OUTPUT JCL BURST
parameter.

Relationship to Other Parameters

Do not code the following parameters with the BURST parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM SUBSYS
DDNAME LABEL VOLUME

Relationship to Other Control Statements

The burster-trimmer-stacker can also be requested using the following:

e The BURST parameter on the OUTPUT JCL statement.
¢ The STACKER parameter on the JES3 /*FORMAT PR statement.
e The BURST parameter on the JES2 /*OUTPUT statement.

Example of the BURST Parameter

//RECORD DD SYSOUT=A,BURST=Y

In this example, the DD statement requests that JES send the output to the
burster-trimmer-stacker of the 3800. The stacker separates the printed output into
separate sheets instead of stacking it in a continuous fanfold.

CCSID Parameter

Parameter Type
Keyword, optional
Purpose

On systems with DFSMS/MVS Version 1 Release 5 or higher, and OS/390 Version
2 Release 5 or higher, you can request DFSMSdfp to convert data from/to the
coded character set identifier (CCSID) specified on the JOB or EXEC statement
to/from the CCSID specified on the DD statement. Data conversion is supported on
access to ISO/ANSI Version 4 tapes using access methods BSAM or QSAM, but
not using EXCP.

ISO/ANSI Version 4 tapes are identified by the LABEL=(,AL) or LABEL=(,AUL)
keyword. The CCSID parameter does not apply to ISO/ANSI Version 1 or
ISO/ANSI/FIPS Version 3 tapes or to tapes with labels other than AL or AUL. See
|0S/390 DFSMSdifp Storage Administration Referenceland DFSMS/MVS Version 1

12-34 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: CCSID

[05/390 DFSMS: Using Data_Sets| for selecting ISO/ANSI Version 4 tapes. See the
latter manual for a list of supported CCSIDs.

The CCSID value of 65535 has a special meaning: it suppresses conversion.

When CCSID is not specified at the JOB, EXEC, or DD levels, data passed to
BSAM and QSAM is converted to 7-bit ASCIl when writing to ISO/ANSI Version 4
tapes. This may result in data loss on conversion. On READ operations the CCSID
(if recorded) on the tape header label is used for conversion.

The CCSID is recorded in the tape header label if conversion is not defaulted.

| CCSID= nnnnn

Subparameter Definition

Default

nnnnn
The CCSID as a decimal number from 1 through 65535.

367.

Relationship to Other Parameters

Do not code the following parameters with the CCSID parameter:

* DDNAME QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
COPIES FLASH ucs
DATA MODIFY

Examples of the CCSID Parameter

Example 1
//J0B1 JOB (123456)
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=NEW,UNIT=3590,
// VOL=SER=T00001, LABEL=AL

In this example, the data on the new ISO/ANSI tape is converted from EBCDIC to
7-bit ASCII because CCSID was not specified at the JOB, EXEC, or DD levels. If
the data passed to the access methods contain graphic or special characters there
could be data loss on conversion to 7-bit ASCII. This is the default operation for
ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 tapes.

Example 2
//J0B2 JOB (123456)
//51 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=0LD,UNIT=3590,
// VOL=SER=T00001, LABEL=AL

Chapter 12. DD Statement 12-35

DD: CCSID

In this example the data on the ISO/ANSI tape is converted from 7-bit ASCII
(default) to EBCDIC. This is the default operation for ISO/ANSI/FIPS Version 3 and
ISO/ANSI Version 4 tapes.

Example 3
//J0B3 JoB (123456)
//51 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=NEW,UNIT=3590,
/1l CCSID=65535,V0L=SER=T00003, LABEL=AL

In this example the data written to the ISO/ANSI Version 4 tape is not converted
(CCSID=65535).

Example 4
//J0B4 JOB (123456)
//51 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=0LD,UNIT=3590,
// CCSID=65535,V0L=SER=T00004, LABEL=AL

In this example the user did not want any conversion (CCSID=65535) on data read
by the access methods.

Example 5
//J0B5 JOB (123456) ,CCSID=37
//51 EXEC PGM=MYPGM1
//DD1 DD DSN=A,DISP=NEW, LABEL=(,AL),
// VOL=SER=T00005,UNIT=3590,CCSID=437

In this example the user wants conversion from a CCSID of 37 (CECP: USA,
Canada, Netherlands, Portugal, Brazil, Australia, New Zealand) to 437 (Base
PC-data) for data written using BSAM or QSAM for ISO/ANSI Version 4 tape. The
CCSID of 437 is recorded on the tape header label.

Example 6
//J0B6 JOB (123456) ,CCSID=37
//S1 EXEC PGM=MYPGM2
//DD1 DD DSN=A,DISP=0LD,UNIT=3590,
// VOL=SER=T00006,CCSID=437

In this example the user wants data conversion from a CCSID of 437 to a CCSID
of 37 for data read by the access method. Note that the CCSID does not have to
be specified if it is recorded in the label.

Example 7
//J0B7 JOB (123456) ,CCSID=37
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=0LD,UNIT=3590,
// VOL=SER=T00007

In this example the ISO/ANSI labeled tape had a recorded CCSID of 437 and a
CCSID was not specified on the DD statement. Data read from this tape by the
access method is converted from a CCSID of 437 to a CCSID of 37.

Example 8

12-36 0S/390 V2R10.0 MVS JCL Reference

DD: CHARS

//30B8 JOB (123456) ,CCSID=37

//S1 EXEC PGM=MYPGM1

//DD1 DD DSN=A,DISP=NEW, LABEL=(,AL),UNIT=3590,
// VOL=SER=T00008,CCSID=437

/152 EXEC PGM=MYPGM2,CCSID=65535

//DD1 DD DSN=B,DISP=NEW,LABEL=(,AL),UNIT=3590,
// VOL=SER=T00009

This example illustrates overriding the CCSID specified on the JOB statement by
the specification on the EXEC statement.

In this example, in step S1 the user wants conversion from a CCSID of 37 to 437
for data written using BSAM or QSAM for the ISO/ANSI Version 4 tape.

In step S2 the JOB level CCSID of 37 is overridden by the EXEC level CCSID of
65535. Since a CCSID of 65535 prevents conversion, the data written to tape is not
converted. A CCSID of 65535 is recorded in the tape header label because no
CCSID was specified on the DD statement.

CHARS Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the CHARS parameter to specify the name of one or more
character-arrangement tables for printing this sysout data set on a 3800 Printing
Subsystem.

Note: CHARS applies only for an output data set that is printed on a 3800.
References

For more information on character-arrangement tables, see the 3800 Programmer's
Guide. Refer t0|0S/390 SMP/E User's Guidd for information on choosing particular
groups, other than the Basic group (which is always available), during system
initialization.

CHARS= {table-name }
{(table-name[,table-name]...)}
{DumP }
{ (DUMP[,table-name]...) }

¢ You can omit the parentheses if you code only one table-name or only DUMP.

¢ Null positions in the CHARS parameter are invalid. For example, you cannot code

CHARS-=(,table-name) or CHARS=(table-name,,table-name).

Chapter 12. DD Statement 12-37

DD: CHARS

Subparameter Definition

table-name
Names a character-arrangement table. Each table-name is 1 through 4
alphanumeric or national ($, #, @) characters. Code from one to four names.

DUMP
Requests a high-density dump of 204-character print lines from a 3800. If more
than one table-name is coded, DUMP must be first.

Note: Use DUMP on a SYSABEND or SYSUDUMP DD statement.

Defaults
If you do not code the DD CHARS parameter, JES uses the following, in order:

1. The CHARS parameter on an OUTPUT JCL statement, if referenced by the DD
statement.

2. The DD UCS parameter value, if coded.
3. The UCS parameter on an OUTPUT JCL statement, if referenced.

If no character-arrangement table is specified on the DD or OUTPUT JCL
statements, JES uses an installation default specified at initialization.

Overrides

A CHARS parameters on a sysout DD statement overrides the OUTPUT JCL
CHARS parameter.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the
following parameters, in override order, to select the font list:

1. Font list in the library member specified by an OUTPUT JCL PAGEDEF
parameter.

. DD CHARS parameter.

. OUTPUT JCL CHARS parameter.
DD UCS parameter.

. OUTPUT JCL UCS parameter.

. JES installation default for the device.

N o 00 A N

. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See [PAGEDEF Parameter” on page 22-65 for more information.

Relationship to Other Parameters
Do not code the following parameters with the CHARS parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM SUBSYS
DDNAME LABEL VOLUME

12-38 0S/390 V2R10.0 MVS JCL Reference

DD: CHKPT

Relationship to Other Control Statements
CHARS can also be coded on the following:

e The OUTPUT JCL statement.
e The JES3 //*FORMAT PR statement.
e The JES2 /*OUTPUT statement.

Printing Device Reassignment

The output device might not be a 3800, for example, if printing were reassigned to
a 3211. See the 3800 Programmer's Guide for restrictions that apply.

Requesting a High-Density Dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:

e FCB=STDS. This parameter produces dump output at 8 lines per inch.
e CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Examples of the CHARS Parameter
Example 1

//DD1 DD SYSOUT=A,CHARS=(GS10,GU12)

In this example, the CHARS parameter specifies two character-arrangement tables
to be used when printing the data set: GS10 and GU12.

Example 2
//SYSABEND DD UNIT=3800,CHARS=DUMP,FCB=STD3

The CHARS parameter on this SYSABEND DD statement specifies a high-density
dump with 204 characters per line. The FCB parameter requests the dump output
at 8 lines per inch.

CHKPT Parameter

Parameter Type
Keyword, optional
Purpose

Use the CHKPT parameter to request that a checkpoint be written when each
end-of-volume is reached on the multivolume data set defined by this DD
statement. Checkpoints are written for all volumes except the last. Checkpoints
can be requested for input or output data sets.

Note: CHKPT is supported only for multivolume QSAM or BSAM data sets.
CHKPT is ignored for single-volume QSAM or BSAM data sets or for ISAM,
BDAM, BPAM, or VSAM data sets. CHKPT is not supported for partitioned
data sets extended (PDSEs).

Chapter 12. DD Statement 12-39

DD: CHKPT

References

For more information, see|0S/390 DFSMS Checkpoint/Restarl

Syntax

CHKPT=EQV

Subparameter Definition

EOV
Requests a checkpoint at each end-of-volume.

Overrides

e The RD parameter values of NC and RNC on the JOB or EXEC statements
override the CHKPT parameter.

e The CHKPT parameter overrides cataloged procedure values or START
command values for checkpoints at end-of-volume.

Relationship to Other Parameters
Do not code the following parameters with the CHKPT parameter.

* DYNAM
DATA QNAME
DDNAME SYSOUT

Relationship to the SYSCKEOV DD Statement

If you specify CHKPT, you must also provide a SYSCKEOV DD statement in the
job or step.

Checkpointing Concatenated Data Sets

For concatenated BSAM or QSAM data sets, CHKPT must be coded on each DD
statement in the concatenation, if checkpointing is desired for each data set in the
concatenation.

Examples of the CHKPT Parameter
Example 1

//DS1 DD DSNAME=INDS,DISP=0LD,CHKPT=EOV,
// UNIT=SYSSQ,VOLUME=SER=(TAPEQ1,TAPEO2,TAPEO3)

In this example, the DD statement defines data set INDS, a multivolume QSAM or
BSAM data set for which a checkpoint is to be written twice: once when
end-of-volume is reached on TAPEO1 and once when end-of-volume is reached on
TAPEO2.

Example 2

//DS2 DD DSNAME=0UTDS,DISP=(NEW,KEEP),
/1l CHKPT=EQV,UNIT=SYSDA,VOLUME=(,,,8)

12-40 0S/390 V2R10.0 MVS JCL Reference

DD: CNTL

In this example, OUTDS is a multivolume data set that is being created. The data
set requires eight volumes. Seven checkpoints will be written: when the
end-of-volume is reached on volumes one through seven.

CNTL Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the CNTL parameter to reference a CNTL statement that appears earlier in the
job. The reference causes the subsystem to execute the program control
statements within the referenced CNTL/ENDCNTL group.

The system searches for an earlier CNTL statement with a label that matches the
label in the CNTL parameter. If the system finds no match, the system issues an
error message.

CNTL= {*.label }
{*.stepname.label
{*.stepname.procstepname.label}

Subparameter Definition

*.label
Identifies an earlier CNTL statement, named label. The system searches for the
CNTL statement first earlier in this step, then before the first EXEC statement
of the job.

*.stepname.label
Identifies an earlier CNTL statement, named label, that appears in an earlier
step, stepname, in the same job.

*.stepname.procstepname.label
Identifies a CNTL statement, named label, in a cataloged or in-stream
procedure. Stepname is the name of the job step that calls the procedure;
procstepname is the name of the procedure step that contains the CNTL
statement named label.

Examples of the CNTL Parameter

Example 1
//MONDAY DD CNTL=+.WKLYPGM

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named WKLYPGM and located
earlier in this step or preceding the first step.

Example 2
//TUESDAY DD CNTL=+.SECOND.BLOCKS

Chapter 12. DD Statement 12-41

DD: COPIES

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named BLOCKS and located in a
preceding step named SECOND.

Example 3
//WEDNES DD CNTL=*.THIRD.PROCTWO.CANETTI

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named CANETTI and located in
the procedure step PROCTWO of the procedure called in the preceding job step
THIRD.

COPIES Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the COPIES parameter to specify how many copies of this sysout data set are
to be printed. The printed output is in page sequence for each copy.

For printing on a 3800 Printing Subsystem, this parameter can instead specify how
many copies of each page are to be printed before the next page is printed.

Note: For more information about the subparameters supported for the 3800
printer, see PSF/MVS Application Programming Guide.

COPIES= {nnn
{ (nnn, (group-value[,group-value]...))}
{(, (group-value[,group-value]...))

¢ You can omit the parentheses if you code only COPIES=nnn.
¢ The following are not valid:

— A null group-value, for example, COPIES=(5,(,)) or COPIES=(5,)
— A zero group-value, for example, COPIES=(5,(1,0,4))
— A null within a list of group-values, for example, COPIES=(5,(1,,4))

Subparameter Definition

nnn
A number (from 1 through 255 in a JES2 system, from 1 through 254 in a JES3
system) that specifies how many copies of the data set are to be printed.

For a data set printed on a 3800, JES ignores nnn if any group-values are
specified.

group-value
Specifies how many copies of each page are to be printed before the next
page is printed. Each group-value is a number from 1 through 255 in a JES2
system and from 1 through 254 in a JES3 system. You can code a maximum

12-42 0S/390 V2R10.0 MVS JCL Reference

Defaults

Overrides

DD: COPIES

of eight group-values. Their sum must not exceed 255 or 254. The total copies
of each page equals the sum of the group-values.

On any of the following statements, if you do not code a COPIES parameter, code
it incorrectly, or code COPIES=0, the system uses the DD COPIES parameter
default of 1.

DD statement
OUTPUT JCL statement
For JES2, the /*OUTPUT statement

A COPIES parameter on a sysout DD statement overrides an OUTPUT JCL
COPIES parameter.

If this DD statement references an OUTPUT JCL statement and that OUTPUT JCL
statement contains a FORMDEF parameter, which specifies a library member, the
COPYGROUP parameter on a FORMDEF statement in that member overrides any
group-value subparameters on the OUTPUT JCL COPIES parameter or the sysout
DD COPIES parameter. For more information, see [{FORMDEF Parameter” on|

page 22-42

Relationship to Other Parameters

Do not code the following parameters with the COPIES parameter.

* DISP QNAME
AMP DYNAM SUBSYS
DATA LABEL VOLUME
DDNAME

Relationship to FLASH Parameter

If this DD statement or a referenced OUTPUT JCL statement also contains a
FLASH parameter, JES prints with the forms overlay the number of copies specified
in one of the following:

e COPIES=nnn, if the FLASH count is larger than nnn. For example, if
COPIES=10 and FLASH=(LTHD,12) JES prints 10 copies, all with the forms
overlay.

e The sum of the group-values specified in the COPIES parameter, if the FLASH
count is larger than the sum. For example, if COPIES=(,(2,3,4)) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

¢ The count subparameter in the FLASH parameter, if the FLASH count is
smaller than nnn or the sum from the COPIES parameter. For example, if
COPIES=10 and FLASH=(LTHD,7) JES prints seven copies with the forms
overlay and three copies without.

Restriction When Coding UNIT Parameter
The COPIES parameter is normally coded with the SYSOUT parameter. If,

however, both COPIES and UNIT appear on a DD statement, JES handles the
COPIES parameter as follows:

Chapter 12. DD Statement 12-43

DD: COPIES

e nnn defaults to 1.

* Only the first group-value is used, if group-values are specified and printing is
on a 3800.

Relationship to Other Control Statements

The number of copies can also be specified on the COPIES parameter of the
following:

e The OUTPUT JCL statement.

e The JES2 /*OUTPUT statement.

e The JES3 /*FORMAT PR statement.
e The JES3 //*FORMAT PU statement.

For JES2, if you request copies of the entire job on the JES2 /*JOBPARM COPIES
parameter and also copies of the data set on the DD COPIES or OUTPUT JCL
COPIES parameter, and if this is a sysout data set, JES2 prints the number of
copies equal to the product of the two requests.

Using OUTPUT JCL COPIES by Nullifying DD Copies

If both a DD statement and a referenced OUTPUT JCL statement contain COPIES
parameters, the DD COPIES parameter normally overrides the OUTPUT JCL
COPIES parameter. For example, four copies are printed of sysout data set DDA:

//0TA OUTPUT COPIES=3
//DDA DD SYSOUT=A,0UTPUT=+.0TA,COPIES=4

However, if the DD COPIES is a null parameter, the OUTPUT JCL COPIES
parameter is used. For example, three copies are printed of sysout data set DDB:

//0TB OUTPUT COPIES=3
//DDB DD SYSOUT=A,0UTPUT=+.0TB,COPIES=

The following example shows a null COPIES parameter on an in-stream DD
statement that overrides a procedure DD statement. The null COPIES parameter
on DD statement PS.DDA nullifies the COPIES parameter on the procedure DD
statement DDA, thereby allowing the COPIES parameter on OUTPUT JCL
statement OT to be used. The system prints three copies of the DDA sysout data
set.

//JEX JOB ACCT34,'PAUL BENNETT'
//INSTR PROC

/1PS EXEC PGM=ABC

/70T OUTPUT COPIES=3

/ /DDA DD SYSOUT=A,0UTPUT=+.0T,COPIES=2
/] PEND

//STEP1 EXEC PROC=INSTR
//PS.DDA DD COPIES=
/*

Note: If a null COPIES parameter appears on a DD statement that either does not
reference an OUTPUT JCL statement or references an OUTPUT JCL
statement that does not contain a COPIES parameter, the system uses a
default of 1.

12-44 0S/390 V2R10.0 MVS JCL Reference

DD: DATA

Examples of the COPIES Parameter
Example 1

//RECORD1 DD SYSOUT=A,COPIES=32

This example requests 32 copies of the data set defined by DD statement
RECORD1 when printing on an impact printer or a 3800.

Example 2
//RECORD2 DD SYSOUT=A,COPIES=(0,(1,2))

In this example, when printing on a 3800, three copies of the data set are printed in
two groups. The first group contains one copy of each page. The second group
contains two copies of each page. When printing on an impact printer, one copy
(the default for nnn) is printed.

Example 3
//RECORD3 DD SYSOUT=A,COPIES=(8,(1,3,2))

In this example, when printing on a 3800, six copies of the data set are printed in
three groups. The first group contains one copy of each page, the second group
contains three copies of each page, and the last group contains two copies of each
page. When the output device is not a 3800, the system prints eight collated
copies.

Example 4
//RECORD4 DD UNIT=38060,COPIES=(1,(2,3))

Because the UNIT parameter is coded and the device is a 3800, the system prints
only the first group-value: two copies of each page.

DATA Parameter

Parameter Type
Positional, optional
Purpose

Use the DATA parameter to begin an in-stream data set that may contain
statements with // in columns 1 and 2. The data records immediately follow the DD
DATA statement; the records may be in any code such as EBCDIC. The data
records end when one of the following is found:

e An EBCDIC /* in the input stream or the two-character delimiter specified by a
DLM parameter on this DD statement

e The input stream runs out of card images

Note that, unlike a DD * statement, the data is not ended by the // that indicates
another JCL statement.

Considerations for an APPC Scheduling Environment

Chapter 12. DD Statement 12-45

DD: DATA

Syntax

Defaults

The DATA parameter has no function in an APPC scheduling environment. If you
code DATA, the system will check it for syntax and ignore it.

//ddname DD DATA[,parameter]... [comments]

When you do not code BLKSIZE and LRECL, JES uses installation defaults
specified at initialization.

Relationship to Other Parameters

The following DD parameters may be specified with the DD * and DD DATA
parameters. All other parameters are either ignored or result in a JCL error.

DCB=BLKSIZE DSNAME
DCB=BUFNO LIKE
DCB=LRECL LRECL
DCB=DIAGNS REFDD
DCB=MODE=C VOLUME=SER
DLM DSID

For JES3, when using the DCB=MODE=C subparameter with the DATA parameter,
DCB=MODE=C must be the only parameter specified with the DATA parameter.

You cannot use the TSO/E SUBMIT command to submit a data set to JES2 or
JES3 with a record length of greater than 80 bytes. The records are truncated to 80
bytes.

You can submit a data set to JES2 or JES3 with a record length of greater than 80
bytes by submitting JCL like the following. In this example JCL,
IBMUSER.LONGDATA.JCL contains the data with a record length of greater than
80 bytes. In a JES3 system, the record length is limited to the installation-defined
spool buffer size minus 44. (For example, if the buffer size is defined as 4084, the
record length limit is 4040.) JESS input service fails any job that exceeds this limit.

If the records longer than 80 bytes include JCL to be transmitted to a remote
system using JES3 // XMIT or //*ROUTE XEQ, or JES2 /"ROUTE XEQ or /*XMIT
with JES3 in the network, the records are truncated to 80 bytes.

//SUBMIT JOB

/151 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=+

//SYSIN DD DUMMY

//SYSUT2 DD SYSOUT=(, INTRDR)

//SYSUT1 DD DSN=IBMUSER.LONGDATA.JCL,DISP=SHR

For 3540 Diskette Input/Output Units

VOLUME=SER, BUFNO, and DSID on a DD DATA statement are ignored except
when they are detected by a diskette reader as a request for an associated data
set. See 3540 Programmer's Reference. On a DD * or DD DATA statement
processed by a diskette reader, you can specify DSID and VOLUME=SER
parameters to indicate that a diskette data set is to be merged into the input stream
following the DD statement.

12-46 0S/390 V2R10.0 MVS JCL Reference

DD: DATA

Relationship to Other Control Statements

Do not refer to an earlier DD DATA statement in DCB, DSNAME, or VOLUME
parameters on following DD statements.

Location in the JCL
A DD DATA statement begins an in-stream data set.
In-stream Data for Cataloged or In-stream Procedures

A cataloged or in-stream procedure cannot contain a DD DATA statement. When
you call a procedure, you can add input stream data to a procedure step by placing
in the calling step one or more DD * or DD DATA statements, each followed by
data.

Multiple In-Stream Data Sets for a Step

You can code more than one DD * or DD DATA statement in a job step in order to
include several distinct groups of data for the processing program. Precede each
group with a DD * or DD DATA statement and follow each group with a delimiter
statement. If you omit a DD statement before input data, the system provides a DD
* statement with the ddname of SYSIN and ends the data when it reads a JCL
statement or runs out of card images. If you omit a delimiter after input data, the
system ends the data when it reads a JCL statement or runs out of card images.

Unread Records

If the processing program does not read all the data in an in-stream data set, the
system skips the remaining data without abnormally terminating the step.

Examples of the DATA Parameter
Example 1

//GROUP1 DD DATA

éata
/%
//GROUP2 DD DATA
éata
/*
This example defines two groups of data in the input stream.

Example 2
//GROUP3 DD DATA,DSNAME=8&GRP3

data

/*

Chapter 12. DD Statement 12-47

DD: DATACLAS

This example defines an in-stream data set with GRP3 as the last qualifier of the
system-generated data set name. A name such as
userid.jobname.jobid.Ddsnumber.GRP3 is generated.

Example 3

//STEP2 EXEC PROC=UPDATE

//PREP.DD4 DD DSNAME=A.B.C,UNIT=3350,VOLUME=SER=D88230,
/l SPACE=(TRK, (10,5)),DISP=(,CATLG,DELETE)

//PREP.IN1 DD DATA

data

/*
//ADD. IN2 DD *

data
/*

This example defines two groups of data in the input stream. The input defined by
DD statement PREP.IN1 is to be used by the cataloged procedure step named
PREP. This data contains job control statements. The input data defined by DD
statement ADD.IN2 is to be used by the cataloged procedure step named ADD.
Because this data is defined by a DD * statement, it must not contain job control
statements.

DATACLAS Parameter

Parameter Type
Keyword, optional

This parameter is useful only if SMS is running. Without SMS, use the DCB
parameter (described on page [12-51)) or the AMP parameter (described on page
12-21).

Purpose

Use the DATACLAS parameter to specify a data class for a new data set. The
storage administrator at your installation defines the names of the data classes you
can code on the DATACLAS parameter.

If SMS is not installed or is not active, the system syntax checks and then ignores
the DATACLAS parameter.

SMS ignores the DATACLAS parameter if you specify it for (1) an existing data set
or (2) a data set that SMS does not support.

You can use the DATACLAS parameter for both VSAM data sets and physical
sequential (PS) or partitioned (PO) data sets.

A data class defines the following data set allocation attributes:

12-48 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: DATACLAS

e Data set organization
— Record organization (RECORG) or
— Record format (RECFM)
e Record length (LRECL)
e Key length (KEYLEN)
* Key offset (KEYOFF)
* Type, PDS or PDSE (DSNTYPE)
e Space allocation (AVGREC and SPACE)
» Retention period (RETPD) or expiration date (EXPDT)
¢ Volume-count (VOLUME)
¢ For VSAM data sets (IMBED or REPLICATE, CISIZE, FREESPACE,
SHAREOPTIONS)

Note

The volume-count on the VOLUME parameter in the data class specifies the
maximum number of SMS-managed volumes that a data set can span. The
volume-count is ignored for data sets to which no storage class is assigned.

For tape data sets, only the following attributes apply:

» EXPDT
 LRECL

e RECFM
« RETPD

References

See |0S/390 DFSMS: Using the Interactive Storage Management Facility| for
information on how to use ISMF to view your installation-defined data classes.

DATACLAS=data-class-name

Subparameter Definition

Defaults

data-class-name
Specifies the name of a data class to be used for allocating the data set.

The name, one to eight characters, is defined by the storage administrator at
your installation.

If you do not specify DATACLAS for a new data set and the storage administrator
has provided an installation-written automatic class selection (ACS) routine, the
ACS routine may select a data class for the data set. Check with your storage
administrator to determine if an ACS routine will select a data class for the new
data set, in which case you do not need to specify DATACLAS.

When RECORG is not specified, data sets associated with a data class, either by

JCL or assigned by an ACS routine, will have DSORG defaulted to either physical
sequential or a partitioned organization.

Chapter 12. DD Statement 12-49

DD: DATACLAS

Overrides
Any attributes you specify on the same DD statement using the following
parameters, override the corresponding attributes in the named data class for the
data set:

RECORG (record organization) or RECFM (record format)

LRECL (record length)

KEYLEN (key length)

KEYOFF (key offset)

DSNTYPE (type, PDS or PDSE)

AVGREC (record request and space quantity)

SPACE (average record length, primary, secondary, and directory quantity)
RETPD (retention period) or EXPDT (expiration date)

VOLUME (volume-count)

Explicit specification of SPACE on the DD statement overrides both the SPACE
and the AVGREC values specified in the data class.

An ACS routine can override the data class that you specify on the DATACLAS
parameter.

Attributes obtained with the LIKE and REFDD parameters override the
corresponding attributes in the DATACLAS parameter.

Relationship to Other Parameters
Do not code the following DD parameters with the DATACLAS parameter.

* DYNAM
DATA QNAME
DDNAME

Examples of the DATACLAS Parameter
Example 1

//SMSDS1 DD DSNAME=MYDS1.PGM,DATACLAS=DCLASO1,DISP=(NEW,KEEP)

In the example, the attributes in the data class named DCLASO1 are used by SMS
to handle the data set. Note that installation-written ACS routines may select a
management class and storage class and can override the specified data class.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// LRECL=256,EXPDT=1996/033

In the example, the logical record length of 256 and the expiration date of February
2, 1996, override the corresponding attributes defined in the data class for the data
set. Note that installation-written ACS routines may select a management class and
storage class and can override the specified data class.

12-50 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

DCB Parameter

Syntax

Parameter Type
Keyword, optional

Notes:

1. With SMS, you do not need to use the DCB parameter to specify data set
attributes. See the DATACLAS parameter (described on page [12-48), the LIKE
parameter (described on page [12-135), and the REFDD parameter (described
on page [12-169).

2. For JES3 SNA RJP, code DCB=LRECL=nnn; where nnn is 1 to 255 when
SYSIN data records are greater than 80 bytes (the default LRECL is 80 bytes).

Purpose

Use the DCB parameter to complete during execution the information in the data
control block (DCB) for a data set.

The data control block is constructed by the DCB macro instruction in assembler
language programs or by file definition statements or language-defined defaults in
programs in other languages.

References

For more information on constructing the data control block, see |05/390 DFSMS]

|Using Data Setd.

[DCB=(subparameter[,subparameter]...)]

DCB= ({dsname } [, subparameter]...
({*.ddname }
({*.stepname.ddname }
({*.stepname.procstepname.ddname}

[L K R |

Parentheses: You can omit the parentheses if you code:
¢ Only one keyword subparameter.
¢ Only a data set name, dsname, without any subparameters.

¢ Only a backward reference without any subparameters. A backward reference is a reference to
an earlier DD statement in the job or in a cataloged or in-stream procedure called by a job step.
A backward reference is in the form *.ddname or *.stepname.ddname or
*.stepname.procstepname.ddname.

For example, DCB=RECFM=FB or DCB=WKDATA or DCB=*.STEP3.DD2

Multiple Subparameters: When the parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in parentheses. For example,
DCB=(RECFM=FB,LRECL=133,BLKSIZE=399) or DCB=(*.DD1,BUFNO=4)

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. End each statement with a comma after a complete subparameter. For example:

//INPUT DD DSNAME=WKDATA,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,
// BUFL=800,BUFN0=4)

Alternate Syntax for DCB Keyword Subparameters

Chapter 12. DD Statement 12-51

DD: DCB

All of the DCB keyword subparameters can be specified without the need to
code DCB=. For example, the following DD statement:

//DDEX DD DSNAME=WKDATA,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) ,DISP=MOD

can also be specified as:
//DDEX DD DSNAME=WKDATA,RECFM=FB,LRECL=80,BLKSIZE=800,DISP=MOD

Note that KEYLEN, LRECL, and RECFM are described as DD parameters.
Note:

¢ |f the BUFMAX subparameter is coded with or without the DCB parameter,
it can have a null value only when coded on a DD which either:

— Overrides a DD in a procedure

— Is added to a procedure.

Subparameter Definition

subparameter
(With SMS, see the DD DATACLAS parameter.)

Specifies a DCB keyword subparameter needed to complete the data control
block.

An alphabetic summary of the DCB keyword subparameters follows this
parameter description.

You must supply DCB information through the DCB subparameters if your
processing program, the data set label, or your language’s defined values do
not complete the data control block.

dsname
(With SMS, see the DD LIKE parameter.)

Names a cataloged data set. The system is to copy DCB information from the
data set’s label. The data set must reside on a direct access volume, and the
volume must be mounted before the job step is executed.

If dsname represents a VSAM data set, and you are allocating a new data set,
you must also supply the RECORG parameter. You can specify RECORG
explicitly (through the RECORG parameter), or implicitly, through the
DATACLAS or LIKE parameters.

A hyphen is a valid character in a catalogued data set name. A data set name
that contains a hyphen must be enclosed in apostrophes if it is used as a DCB
subparameter.

The dsname cannot contain special characters, except for periods used in
qualifying the name. Do not specify a generation data group (GDG) base name,
a GDG relative generation member name, or a member name of a non-GDG
data set.

The system copies the following DCB information from the data set label:

12-52 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

DSORG (used in a backward reference)
RECFM

OPTCD

BLKSIZE

LRECL

KEYLEN

RKP

If you do not specify the expiration date of the cataloged data set, the system
copies it from the data set label. The system also copies the system code.

If you code any DCB subparameters after the dsname, these subparameters
override the corresponding subparameters in the data set label. The system
copies from the referenced label only those subparameters not specified on the
referencing DD statement.

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname
(With SMS, see the DD REFDD parameter or the DD LIKE parameter .)

Specify a backward reference to an earlier DD statement. The system is to
copy DCB information from the DCB parameter specified on that DD statement.
The DCB parameter of the referenced DD statement must contain
subparameters, and it cannot name a cataloged data set or refer to another DD
statement.

*.ddname specifies the ddname of an earlier DD statement in the same step.
*.stepname.ddname specifies the ddname of a DD statement in an earlier step,
stepname, in the same job. *.stepname.procstepname.ddname specifies the
ddname of a DD statement in a cataloged or in-stream procedure called by an
earlier job step. Stepname is the name of the job step that calls the procedure
and procstepname is the name of the procedure step that contains the DD
statement.

If you code any DCB subparameters after the reference, these subparameters
override the corresponding subparameters on the referenced DD statement.
The system copies from the referenced DD statement only those
subparameters not specified on the referencing DD statement.

Do not reference a DD * or a DD DATA statement.

Note: The system also copies the UCS and FCB parameters from the
referenced DD statement, unless you override them in the referencing
DD statement.

Completing the Data Control Block

The system obtains data control block information from the following sources, in
override order:

e The processing program, that is, the DCB macro instruction in assembler
language programs or file definition statements or language-defined defaults in
programs in other languages.

e The DCB subparameter of the DD statement.

e The data set label.

Chapter 12. DD Statement 12-53

DD: DCB

Therefore, if you supply information for the same DCB field in your processing
program and on a DD statement, the system ignores the DD DCB subparameter. If
a DD statement and the data set label supply information for the same DCB field,
the system ignores the data set label information.

Note: When concatenated data sets are involved, the DCB is completed based on
the type of data set and how the processing program uses the data set.
See |0S5/390 DFSMS: Using Data Sets|for more information.

Relationship to Other Parameters

See the descriptions of the individual DCB subparameters for the DD parameters
and DCB subparameters that should not be coded with a specific DCB
subparameter.

Do not code the following parameters with the DCB parameter.

AMP
DYNAM

With the DDNAME parameter, code only the BLKSIZE, BUFNO, and DIAGNS DCB
subparameters.

With the QNAME parameter, code only the BLKSIZE, LRECL, OPTCD, and
RECFM DCB subparameters.

The DD parameter KEYLEN and DCB subparameters KEYLEN, MODE, PRTSP,
STACK, and TRTCH apply to specific device types. If you specify one of these
subparameters on a DD statement for a device different from the type to which it
applies, the system interprets the value incorrectly.

With the SPACE parameter, the value specified for BLKSIZE directly affects the
amount of space obtained for data sets allocated in records, and for data sets
allocated in blocks where the block length (blklgth) is zero.

For 3540 Diskette Input/Output Units
The VOLUME=SER, DCB=BUFNO, and DSID parameters on a DD * or DD DATA

statement are ignored except when they are detected by a diskette reader as a
request for an associated data set. See 3540 Programmer’s Reference.

Examples of the DCB Parameter

Example 1

//bD1 DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321,

// UNIT=3400-6,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
/l DEN=1,TRTCH=C)

DD statement DD1 defines a new data set named ALP. The DCB parameter
contains the information necessary to complete the data control block.

Example 2

//DD1A DD DSNAME=EVER,DISP=(NEW,KEEP) ,UNIT=3380,
/l DCB=(RECFM=FB,LRECL=326,BLKSIZE=23472),
/l SPACE=(23472, (200,40))

12-54 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

DD statement DD1A defines a new data set named EVER on a 3380. The DCB
parameter contains the information necessary to complete the data control block.

//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP) ,UNIT=3380,
// RECFM=FB, LRECL=326,
// SPACE=(23472,(200,40))

DD statement DD1B is the same as the DD1A statement except that it shows the
alternate syntax for the DCB keyword subparameters. Also, because BLKSIZE is
omitted, the system will select an optimum block size for the data.

Example 3

//DD2 DD DSNAME=BAL ,DISP=0LD,DCB=(RECFM=F,LRECL=80,

// BLKSIZE=80)

//DD3 DD DSNAME=CNANN,DISP=(,CATLG,DELETE) ,UNIT=3400-6,
// LABEL=(,NL),VOLUME=SER=663488,DCB=+.DD2

DD statement DD3 defines a new data set named CNANN and requests that the
system copy the DCB subparameters from DD statement DD2, which is in the
same job step.

Example 4
//DD4 DD DSNAME=JST,DISP=(NEW,KEEP) ,UNIT=SYSDA,
// SPACE=(CYL, (12,2)),DCB=(A.B.C,KEYLEN=8)

DD statement DD4 defines a new data set named JST and requests that the
system copy the DCB information from the data set label of the cataloged data set
named A.B.C. If the data set label contains a key length specification, it is
overridden by the KEYLEN coded on this DD statement.

Example 5
//DD5 DD DSNAME=SMAE,DISP=0LD,
// DCB=(*.STEP1.PROCSTP5.DD8,BUFN0O=5)

DD statement DD5 defines an existing, cataloged data set named SMAE and
requests that the system copy DCB subparameters from DD statement DD8, which
is contained in the procedure step named PROCSTP5. The cataloged procedure is
called by EXEC statement STEP1. Any of the DCB subparameters coded on DD
statement DD8 are ignored if they are specified in the program. If the DCB BUFNO
subparameter is not specified in the program, five buffers are assigned.

DCB Subparameters

Chapter 12. DD Statement 12-55

DD: DCB

Access Method

B Q
B|l |B|(B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A/A|/A|/AIC|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
BFALN X | X[X|X X XX BFALN=({FID}
Specifies that each buffer starts either on a word boundary that is not also
a doubleword boundary or on a doubleword boundary. If both BFALN and
BFTEK are specified, they must be specified from the same source.
Default: D (doubleword)
Note: Do not code the BFALN subparameter with DCB subparameter
GNCP, or with DD parameters DDNAME or QNAME.
BFTEK X XX X BDAM and BSAM: BFTEK=R

R Specifies that the data set is being created for or contains
variable-length spanned records. Do not specify R for a PDSE.

BTAM: BFTEK=D

D Specifies that dynamic buffering is to be used in the processing
program; if dynamic buffering is specified, a buffer pool also
must be defined.

QSAM: BFTEK={SIA}

S Specifies simple buffering (default). Simple buffering may be
coded at any time for QSAM files.

A Specifies locate mode logical record interface for spanned
records. QSAM obtains a logical record area and assembles the
physical record segments of a spanned record into that logical
record area. This forms a complete logical record before
pointing the user to it.

e This parameter value may be specified only for RECFM=VS
or RECFM=VBS files; if specified without RECFM=VSIVBS,
the specification is ignored.

¢ Locate mode must be used together with this parameter
value.

Note: If locate mode is used on a RECFM=VSIVBS file
and BFTEK=A is not specified, the results may
include processing the segments of a spanned
record as separate records, issuance of system
completion (abend) code X'002' with reason code
X'04', or other unpredictable results.

e If BFTEK=A is specified with move mode, a system
completion (abend) code X'013' with reason code X'5C'
is issued.

For information about the locate and move modes in the DCB
subparameters BFTEK and VBS, see|0S5/390 DFSMS Macro Instructions|

If both BFALN and BFTEK are specified, they must be specified from the
same source.

Note: Do not code the BFTEK subparameter with DCB subparameter
GNCP, or with DD parameters DDNAME or QNAME.

Note: For compatibility purposes with previous operating systems, the
system accepts BFTEK=E.

12-56 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method

B Q
Bl |[B|B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
BLKSIZE X XX X X | X | X | BLKSIZE={valuelvalueKlvalueMlvalueG}

Specifies the maximum length, in bytes, of a block.

value Specifies the maximum length of a block. The number
you specify for BLKSIZE depends on the device type
and the record format for the data set. The maximum
is 32760 for DASD data sets and 2,147,483,648 for
tape, except for data sets on magnetic tape with
ISO/ANSI/FIPS labels, where the minimum value for
BLKSIZE is 18 bytes and the maximum is 2048 bytes.
(To allow a value greater than 2048, use installation
exit routine IFG0193G, described in[0S/390 DESMY
Installation EXits})

valueK Specifies the maximum length, in kilobytes, of a block.
(1 kilobyte = 1024 bytes.) The maximum is 2097152. If
2097152K is coded, the block size assigned will be the
maximum: 2,147,483,648.

valueM Specifies the maximum length, in megabytes, of a
block. (1 megabyte = 1024 kilobytes.) The maximum is
2048. If 2048M is coded, the block size assigned will
be the maximum: 2,147,483,648.

valueG Specifies the maximum length, in gigabytes, of a block.
(1 gigabyte = 1024 megabytes.) The maximum is 2G.
If 2G is coded, the block size assigned will be the
maximum: 2,147,483,648.

If you code the BLKSIZE subparameter in the DCB macro instruction or on
a DD statement that defines an existing data set with standard labels, the
DCB BLKSIZE overrides the block size specified in the label. BLKSIZE can
be coded but will have no effect on EXCP processing.

The number you specify for BLKSIZE directly affects the amount of space
obtained for data sets allocated in records, and for data sets allocated in
blocks where the block length (blklgth) is zero.

Default: If you do not code BLKSIZE, the system can, under certain
conditions, determine an optimum block size for the data. For detailed
information about system-determined block size, see

Note: Do not code the BLKSIZE subparameter with the BUFSIZE
subparameter.

Chapter 12. DD Statement 12-57

DD: DCB

Access Method

DCB
Subparameters

Srow
= >P0—-w
=>-Hw
TOXm
=EPrP O

=E>0"0O

Description of Subparameters

X[| ESPUOVTO
X[ESPOO
X[| ES:POWO

=>0-

BLKSZLIM

BLKSZLIM={valuelvalueKlvalueMIvalueG}
Specifies an upper limit on the data set's block size if BLKSIZE is omitted.

value Specifies an upper limit on the data set's block size if
BLKSIZE is omitted from all sources and the system
determines a block size for the data set. If a BLKSIZE
value is available from any source (such as the DD
statement, data set label or the program), then the
block size limit has no effect. The BLKSZLIM
parameter is mainly useful when writing new magnetic
tape data sets with programs than can handle blocks
longer than 32760 bytes. Currently the maximum
block size supported on any tape is 256 KB. You can
safely code a larger value for BLKSZLIM. The
BLKSZLIM value never has to be a multiple of the
LRECL value.

Specifies the block size limit in kilobytes (units of
1024). The maximum value is 2097152K (two
gigabytes). The minimum value is 32K.

Specifies the block size limit in megabytes (units of
1024K). The maximum value is 2048M (two gigabytes).
The minimum value is 1M.

Specifies the block size limit in gigabytes (units of
1024M). The maximum allowable value is 2G (two
gigabytes). The minimum value is 1G.

Default: If the record format is not U and you do not code the BLKSZLIM
parameter, and block size (BLKSIZE) is not available from an source. then
an OPEN for output will use the first available value from the following list
as the upper limit for the system-determined block size:

valueK

valueM

valueG

¢ Data class, even if the data set is not SMS-managed, but SMS is
running. You can specify the data class via the DATACLAS parameter
or the system's ACS routines might do it.

¢ System-level default established by the system programmer in the
DEVSUPxx member of SYS1.PARMLIB.

e 32760

BUFIN X

BUFIN=buffers

Specifies the number of buffers to be assigned initially for receiving
operations for each line in the line group. The combined BUFIN and
BUFOUT values must not be greater than the number of buffers in the
buffer pool for this line group (not including those for disk activity only).

Default: 1

Note: Do not code the BUFIN subparameter with DCB subparameter
BUFNO, or DD parameters DDNAME, QNAME.

BUFL X|X[X|X X XXX

BUFL=bytes

Specifies the length, in bytes, of each buffer in the buffer pool. The
maximum is 32760.

Note: Do not code the BUFL subparameter with DD parameter DDNAME.

12-58 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method

B Q
Bl |[B|B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
BUFMAX X'| BUFMAX=buffers

Specifies the maximum number of buffers to be allocated to a line at one
time. Number must be 2 through 15 and must be equal to or greater than
the larger of the numbers specified by the BUFIN and BUFOUT
subparameters.

Default: 2

Note: Do not code the BUFMAX subparameter with DCB subparameter
NCP, or DD parameters DDNAME, QNAME.

BUFNO X|X[X|X|X[X XX BUFNO=buffers

Specifies the number of buffers to be assigned to the DCB. The maximum
normally is 255, but can be less because of the size of the region.

Note: Do not code the BUFNO subparameter with DCB subparameters
BUFIN, BUFOUT, or DD parameter QNAME.

BUFOFF X X BUFOFF={nlIL}

n Specifies the length, in bytes, of the block prefix used with an ASCII
tape data set. For input, n can be 0 through 99. For output, n must
be 0 for writing an output data set with fixed-length or
undefined-length records.

L Specifies that the block prefix is 4 bytes and contains the block
length. BUFOFF=L is valid only with RECFM=D. For output, only
BUFOFF=L is valid.

Note: Do not code the BUFOFF subparameter with DD parameters
DDNAME, QNAME.

BUFOUT X'| BUFOUT=buffers

Specifies the number of buffers to be assigned initially for sending
operations for each line in the line group. The combined number of BUFIN
and BUFOUT values must not be greater than the number of buffers in the
buffer pool for this line group (not including those for disk activity only) and
cannot exceed 15.

Default: 2

Note: Do not code the BUFOUT subparameter with DCB subparameter
BUFNO, or DD parameter DDNAME.

BUFSIZE X'| BUFSIZE=bytes

Specifies the length, in bytes, of each of the buffers to be used for all lines
in a particular line group. Length must be 31 through 65535 bytes.

Note: Do not code the BUFSIZE subparameter with DCB subparameter
BLKSIZE, or DD parameters DDNAME, QNAME.

CPRI X | CPRI={RIEIS}

Specifies the relative transmission priority assigned to the lines in this line

group.

R Specifies that processor receiving has priority over processor
sending.

E Specifies that receiving and sending have equal priority.

S Specifies that processor sending has priority over processor
receiving.

Note: Do not code the CPRI subparameter with DCB subparameter
THRESH, or DD parameters DDNAME, OUTLIM, QNAME.

Chapter 12. DD Statement 12-59

DD: DCB

Access Method
B Q
B|l |B|(B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A/A|/A|/AIC|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
CYLOFL X CYLOFL=tracks
Specifies the number of tracks on each cylinder to hold the records that
overflow from other tracks on that cylinder. The maximum is 99. Specify
CYLOFL only when OPTCD=Y.
Note: Do not code the CYLOFL subparameter with DCB subparameter
RESERVE, or DD parameters DDNAME, FCB, QNAME, UCS.
DEN X X X DEN={1121314}
Specifies the magnetic density, in number of bits-per-inch, used to write a
magnetic tape data set.
DEN 7-track tape 9-track tape
1 556 -
2 800 800 (NRZI)
3 - 1600 (PE)
4 - 6250 (GCR)
NRZI Non-return-to-zero inverted recording mode.
PE Phase encoded recording mode.
GCR Group coded recording mode.
Default: 800 bpi assumed for 7-track tape and 9-track without dual
density.
1600 bpi assumed for 9-track with dual density or
phase-encoded drives.
6250 bpi assumed for 9-track with 6250/1600 bpi dual density
or group coded recording tape.
Note: Do not code the DEN subparameter with DD parameters DDNAME,
QNAME.
DIAGNS X|X[X[X[|X[X|X|X[X DIAGNS=TRACE
Specifies the OPEN/CLOSE/EQV trace option, which gives a
module-by-module trace of OPEN/CLOSE/EOV’s work area and the DCB.
If the generalized trace facility (GTF) is not running and tracing user
events, DIAGNS is ignored. See|0S/390 DFSMSdfp Diagnosis Reference
for more information.

12-60 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method
B Q
Bl |[B|B|B|E 1 |Q|T
DIS|P|[S|T|X|G|S|S|C
DCB A(AIAIA/A|IC(A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
DSORG XX |[X|X[X|X|[X|X|X|X| DSORG=organization
Specifies the organization of the data set and indicates whether the data
set contains any location-dependent information that would make the data
set unmovable.
Note: Do not code the DSORG subparameter with DD parameters
DDNAME, QNAME, RECORG.
Organization | Access Method
PS Physical sequential data set BSAM, EXCP,QSAM, TCAM
PSU Physical sequential data set BSAM, QSAM, EXCP
that contains
location-dependent information
DA Direct access data set BDAM, EXCP
DAU Direct access data set that BDAM, EXCP
contains Tocation-dependent
information
IS Indexed sequential data set BISAM,QISAM, EXCP
ISU Indexed sequential data set QISAM, EXCP
that contains
location-dependent information
PO Partitioned data set BPAM, EXCP
(PDS or PDSE)
POU Partitioned data set (PDS) that| BPAM,EXCP
contains location-dependent
information
CX Communications Tine group BTAM
GS Graphic data control block GAM
EROPT X X EROPT=x
BTAM: Requests the BTAM on-line terminal test option. x=T
QSAM: Specifies the option to be executed if an error occurs in reading
or writing a record.
x=ACC System is to accept the block causing the error.
x=SKP System is to skip the block causing the error.
x=ABE System is to cause abnormal end of task.
Default: ABE
Note: Do not code the EROPT subparameter with DD parameters
DDNAME, QNAME.

Chapter 12. DD Statement 12-61

DD: DCB

Access Method

DCB
Subparameters

Srow
= >P0—-w
= >T0TW
=>-Hw
TOXm
=EPrP O
=E>0"0O

Description of Subparameters

X[ESPOO
X[| ES:POWO
=>0-

FUNC

FUNC={IIRIPIWIDIXIT}

Specifies the type of data set to be opened for a 3505 Card Reader or
3525 Card Punch. Unpredictable results will occur if coded for other than a
3505 or 3525.

Data set is for punching and printing cards.
Data set is for reading cards.

Data set is for punching cards.

Data set is for printing.

Protected data set is for punching.

Data set is for both punching and printing.
Two-line print option.

AX0OsTD—

The only valid combinations of these values are:

WT RWT RPWXT PWX
RP PW RPWD RPWX
RPD PWXT RWX RWX
RW RPW RWXT

= U o+

Default: P, for output data set. R, for input data set.

Note: Do not code the FUNC subparameter with the data-set-sequence
number of the DD LABEL parameter, or DD parameters DDNAME,
QNAME.

GNCP X

GNCP=n

Specifies the maximum number of 1/0O macro instructions that the program
will issue before a WAIT macro instruction.

Note: Do not code the GNCP subparameter with DCB subparameters
BFALN, BFTEK, or DD parameters DDNAME, QNAME.

INTVL X

INTVL={nl0}

Specifies the interval, in seconds, between passes through an invitation
list.

Default: 0

Note: Do not code the INTVL subparameter with DD parameters
DDNAME, FCB, QNAME, UCS.

IPLTXID X

IPLTXID=member

Specifies the name of the partitioned data set (PDS) member that you
want loaded into a 3704/3705 Communications Controller. The DCB
IPLTXID subparameter overrides IPLTXID in the TERMINAL macro
representing the NCP.

Note: Do not code the IPLTXID subparameter with DD parameters
DDNAME, DSNAME, QNAME.

KEYLEN X XX X X X

KEYLEN=bytes

The KEYLEN keyword subparameter is described on the DD KEYLEN
parameter, page|12-12

LIMCT X

LIMCT={blocksltracks}

Specifies how many blocks (if relative block addressing is used) or how
many tracks (if relative track addressing is used) are to be searched for a
free block or available space. This kind of search occurs only when DCB
OPTCD=E is also specified; otherwise, LIMCT is ignored. If the LIMCT
number equals or exceeds the number of blocks or tracks in the data set,
the entire data set is searched.

Note: Do not code the LIMCT subparameter with DD parameters
DDNAME, QNAME.

12-62 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method

=S>P0" W
=>-Hw

B
D
DCB A
Subparameters |M

=EPrPO

Description of Subparameters

X[| ESPUOVTO
X[ESPOO
X|[OOXm
X[ES:POVTO
X[| ES:POWO
x| 2Pp0O-H

LRECL LRECL=bytes

The LRECL keyword subparameter is described on the DD LRECL
parameter, page|12-13

MODE X| |X X MODE= {C [0]}
{E [R]}

Specifies the mode of operation to be used with a card reader, a card
punch, or a card read-punch.

C Card image (column binary) mode
E EBCDIC mode

O Optional mark read mode

R Read column eliminate mode

If you specify R, you must also specify either C or E. Do not code the
MODE subparameter for data entered through the input stream except in a
JES3 system.

Do not code MODE=C for JES2 or JES3 output.
Default: E

Note: Do not code the MODE subparameter with DCB subparameters
KEYLEN, PRTSP, TRTCH, or DD parameters DDNAME, KEYLEN,
QNAME.

NCP XXX NCP=n

Specifies the maximum number of READ or WRITE macro instructions that
may be issued before a CHECK macro instruction is issued to test for
completion of the 1/O operation. The maximum number is 255 for BSAM
and BPAM, but may actually be smaller depending on the size of the
address space. If chained scheduling is used, the number should be
greater than 1. The maximum number for BISAM is 99.

Default: 1

Note: Do not code the NCP subparameter with DCB subparameter
BUFMAX, or DD parameters DDNAME, QNAME.

NTM X NTM=tracks

Specifies the number of tracks to be used for a cylinder index. When the
specified number of tracks has been filled, a master index is created. The
DCB NTM is needed only when the DCB OPTCB=M. If you specify
OPTCD=M but omit NTM, the master index option is ignored.

Note: Do not code the NTM subparameter with DCB subparameter PCl,
or DD parameters DDNAME, QNAME.

Chapter 12. DD Statement 12-63

DD: DCB

Access Method

B Q
Bl |[B|B|B|E 1 QT
DIS|P|[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
OPTCD X[X|X|X X X | X |X | Specifies the optional services to be performed by the control program. All

optional services must be requested in one source, that is, in the data set
label of an existing data set, in the DCB macro, or in the DD DCB
parameter. However, the processing program can modify the DCB OPTCD
field. Code the characters in any order; when coding more than one, do
not code commas between the characters.

Note: Do not code the OPTCD subparameter with DD parameter
DDNAME.

BDAM: OPTCD= {A}[E][F][W]
{R}

A indicates that the actual device addresses are to be specified in
READ and WRITE macro instructions.

R indicates that relative block addresses are to be specified in READ
and WRITE macro instructions.

E indicates that an extended search (more than one track) is to be
performed for a block of available space. LIMCT must also be coded.
Do not code LIMCT=0 because it will cause an abnormal termination
when a READ or WRITE macro instruction is executed.

F indicates that feedback can be requested in READ and WRITE
macro instructions and the device is to be identified in the same form
as it was presented to the control program.

W requests a validity check for write operations on direct access
devices.

BISAM: OPTCD={[L][R][W]}

L requests that the control program delete records that have a first byte
of all ones. These records will be deleted when space is required for
new records. To use the delete option, the DCB RKP must be greater
than zero for fixed-length records and greater than four for
variable-length records.

R requests that the control program place reorganization criteria
information in certain fields of the DCB. The problem program can
analyze these statistics to determine when to reorganize the data set.

W requests a validity check for write operations.

Default: R, whenever the OPTCD subparameter is omitted from all
sources.

12-64 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method

B Q
B|l |B|(B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A/A|/A|/AIC|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
OPTCD BPAM: OPTCD= {CIWICW}
(continued) C requests chained scheduling.

W requests a validity check for write operations.

BSAM and QSAM: OPTCD=

{ }
{ }
{ }
{C[T][BI[V] }
%H [Z] [B] 1
{w[C][T]1[B] [U]}
}Z[C] (7] [B] [U]{

QrcI [T [B]
{z }

B requests that the end-of-volume (EOV) routine disregard the
end-of-file (EOF) recognition for magnetic tape. For an input data set
on a standard-labeled (SL or AL) tape, the EOV routine treats EOF
labels as EOV labels until the volume serial list is exhausted. This
option allows SL or AL tapes to be read out of volume sequence or
to be concatenated to another tape with the same data set name
using one DD statement. See "Data Sets that Span Libraries" in
[05/390 MVS JCL User's Guide]for a description of allocation
processing for multi-volume data sets created in different tape
libraries.

C requests chained scheduling.

H requests hopper empty exit for optical readers or bypass of DOS
checkpoint records.

J for a data set to be printed on a 3800 Printing Subsystem, instructs
the system that the logical record for each output data line contains a
table reference character (TRC). The TRC identifies which character
arrangement table in the CHARS parameter is to be used to print the
line. Before specifying OPTCD=J, see the 3800 Programmer's Guide.

Chapter 12. DD Statement 12-65

DD: DCB

Access Method

(continued)

B Q
Bl |[B|B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
OPTCD BSAM and QSAM (continued):

Q indicates that all the user data in the data set is in ASCII.
BSAM or QSAM converts the records from ASCII to EBCDIC
when reading and converts the records from EBCDIC to ASCII
when writing. The data set must reside on magnetic tape and
must not contain IBM standard labels. The record format
(RECFM) must not be V but can be D. If the label type is
ISO/ANSI/FIPS, specified as LABEL=(,AL), the system forces

OPTCD=Q.

T requests user totaling facility. T cannot be specified for a SYSIN
or sysout data set.

u for 1403 or 3211 Printers with the Universal Character Set

(UCS) feature and for the 3800, permits data checks and allows
analysis by an appropriate error analysis routine. If U is omitted,
data checks are not recognized as errors.

w requests a validity check for write operations on direct access
devices. Requests "tape write immediate" mode on a cartridge
tape device such as the IBM 3490 Magnetic Tape Subsystem.

Z for magnetic tape reel input, requests that the control program
shorten its normal error recovery procedure. When specified, a
data check is considered permanent after five unsuccessful
attempts to read a record.

OPTCD=Z is ignored if chained scheduling or a tape cartridge is used. For
a PDSE, all options except OPTCD=J are ignored.

EXCP: OPTCD=Z

Z for magnetic tape reel input, requests that the control program
shorten its normal error recovery procedure. When specified, a data
check is considered permanent after five unsuccessful attempts to
read a record. OPTCD=Z has no effect on a tape cartridge.

12-66 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method

B Q
Bl |[B|B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
OPTCD QISAM: OPTCD={[I][LI[M][R][UIIWI[YT}

(continued)

| requests that ISAM use the independent overflow areas for overflow
records.

L requests that ISAM delete records that have a first byte of all ones.
These records can be deleted when space is required for new
records. To use the delete option, the DCB RKP must be greater
than zero for fixed-length records and greater than four for
variable-length records.

M requests that the system create and maintain one or more master
indexes, according to the number of tracks specified in the DCB NTM
subparameter.

R requests that the control program place reorganization criteria
information in the DCB. The problem program can analyze these
statistics to determine when to reorganize the data set.

U requests that the system accumulate track index entries in storage
and write them as a group for each track of the track index. U can be
specified only for fixed-length records.

W requests a validity check for write operations on direct access
devices.

Y requests that the system use the cylinder overflow areas for overflow
records.

Default: R, whenever the OPTCD subparameter is omitted from all
sources.

TCAM: OPTCD={CIUIW}

C specifies that one byte of the work area indicates if a segment of a
message is the first, middle, or last segment.

U specifies that the work unit is a message. If U is omitted, the work
unit is assumed to be a record.

W specifies that the name of each message source is to be placed in an
8-byte field in the work area.

Chapter 12. DD Statement 12-67

DD: DCB

Access Method

DCB
Subparameters

Srow
= >P0—-w
= >T0TW
= >0w
=>-Hw
TOXm
=EPrP O
=E>0"0O
=SE>0O

Description of Subparameters

PCI

x| 2Pp0O-H

{(IN][.N])3
PCI= {([RI[.R])}
{([AT[,A])}
{(IXI[.x1)}

Specifies (1) whether or not a program-controlled interruption (PCI) is to be
used to control the allocation and freeing of buffers and (2) how these
operations are to be performed. The first operand applies to receiving
operations and the second to sending operations.

N specifies that no PCls are taken while filling buffers during receiving
operations or emptying buffers during sending operations.

R specifies that after the first buffer is filled or emptied, a PCI occurs
during the filling or emptying of each succeeding buffer. The
completed buffer is freed, but no new buffer is allocated to take its
place.

A specifies that after the first buffer is filled or emptied, a PCI occurs
during the filling or emptying of the next buffer. The first buffer is
freed, and a buffer is allocated to take its place.

X specifies that after a buffer is filled or emptied, a PCI occurs during
the filling or emptying of the next buffer. The first buffer is not freed,
but a new buffer is allocated.

You can omit the parentheses if you code only the first operand.
Default: (A,A)

Note: Do not code the PCI subparameter with DCB subparameter NTM,
or DD parameters DDNAME, QNAME.

PRTSP X X X

PRTSP={0I11213}

Specifies the line spacing for an online printer. PRTSP is valid only for an
online printer and only if the RECFM is not A or M. PRTSP=2 is ignored if
specified with the DD SYSOUT parameter. 0 - spacing is suppressed, 1 -
single, 2 - double, 3 - triple spacing

JES2 ignores PRTSP for sysout data sets.
Default: 1

Note: Do not code the PRTSP subparameter with DCB subparameters
KEYLEN, MODE, STACK, TRTCH, or DD parameters DDNAME,
KEYLEN, QNAME.

RECFM X XX X XX

RECFM=format

The RECFM keyword subparameter is described on the DD RECFM
parameter, page|12-164

RESERVE

RESERVE=(bytes1,bytes2)

Specifies the number of bytes (0 through 255) to be reserved in a buffer
for insertion of data by the DATETIME and SEQUENCE macros.

bytes1 indicates the number of bytes to be reserved in the first buffer that
receives an incoming message.

bytes2 indicates the number of bytes to be reserved in all the buffers
following the first buffer in a multiple-buffer header situation.

Default: (0,0)

Note: Do not code the RESERVE subparameter with DCB subparameters
CYLOFL, RKP, or DD parameters DDNAME, KEYOFF, QNAME,
UCS.

12-68 0S/390 V2R10.0 MVS JCL Reference

DD: DCB

Access Method
B Q
Bl |[B|B|B|E 1 QT
DIS|P|[S|T|X|G|S|S|C
DCB A|/A/A|/A|/AIC|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
RKP X X RKP=number
With SMS, use the DD KEYOFF or DATACLAS parameter. Specifies the
position of the first byte of the record key in each logical record. The first
byte of a logical record is position 0.
If RKP=0 is specified for blocked fixed-length records, the key begins in the
first byte of each record. OPTCD=L must not be specified.
If RKP=0 is specified for unblocked fixed-length records, the key is not
written in the data field. OPTCD=L can be specified.
For variable-length records, the relative key position must be 4 or greater,
if OPTCD=L is not specified; the relative key position must be 5 or greater,
if OPTCD-=L is specified.
For EXCP processing, RKP can be coded but is ignored.
Default: 0
Note: Do not code the RKP subparameter with DCB subparameter
RESERVE, or DD parameters DDNAME, FCB, KEYOFF, UCS.
STACK X X X STACK={112}
Specifies which stacker bin is to receive a card.
Default: 1
Note: Do not code the STACK subparameter with DCB subparameters
KEYLEN, PRTSP, TRTCH, or DD parameters DDNAME, KEYLEN,
QNAME.
THRESH X | THRESH=nn
Specifies the percentage of the nonreusable disk message queue records
that are to be used before a flush closedown occurs.
Default: Closedown occurs when 95 percent of the records have been
used.
Note: Do not code the THRESH subparameter with DCB subparameter
CPRI, or DD parameters DDNAME, OUTLIM, QNAME.

Chapter 12. DD Statement 12-69

DD: DDNAME

Access Method

B Q
Bl |[B|B|B|E 1 QT
DIS|P[S|T|X|G|S|S|C
DCB A|/A|/A|IA|IA|C|A|A|A|A
Subparameters (M (M |M (M |M|P (M|M|M|M| Description of Subparameters
TRTCH X X X TRTCH={CIEITIET} {COMPINOCOMP}

With C, E, T, or ET: specifies the recording technique for 7-track tape.
C specifies data conversion, odd parity, and no translation.
E specifies no data conversion, even parity, and no translation.

T specifies no data conversion, odd parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

ET specifies no data conversion, even parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

Default: no conversion, odd parity, and no translation.

With COMP or NOCOMP: specifies data compaction or no data
compaction on a tape device enabled for compaction. Data compaction is
not supported with ISO/ANSI labels.

COMP specifies data compaction.
NOCOMP specifies no data compaction

Defaults: On an IBM standard label tape, data sets after the first data set
have the same compaction value (COMP or NOCOMP) as the first data
set. The system ignores any compaction specified on data sets after the
first. The system takes the compaction value from the first source that
specifies it. The following sources can specify compaction:

1. TRTCH subparameter.

2. Data class, as set by the storage administrator. The tape, however,
does not have to be system-managed.

3. DEVSUPxx member of SYS1.PARMLIB.

4. The hardware model. For the IBM 3480, the default is NOCOMP. For
the IBM 3490, the default is COMP.

See|0S5/390 MVS JCL User's Guidelfor information about using IEFBR14
and the TRTCH subparameter.

Note: Do not code the TRTCH subparameter with DCB subparameters
KEYLEN, MODE, PRTSP, STACK, or DD parameters DDNAME,
KEYLEN, QNAME.

Note: TRTCH is not applicable for DASD datasets. If specified, it will be
ignored.

DDNAME Parameter

Parameter Type

Keyword, optional

Purpose

Use the DDNAME parameter to postpone defining a data set until later in the same
job step. A DDNAME parameter on a DD statement in a cataloged or in-stream

procedure allows you to postpone defining the data set until a job step calls the
procedure; the data set must be defined in the calling job step.

12-70 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: DDNAME

DDNAME=ddname

¢ The DDNAME parameter can have a null value only when coded on a DD which either:

— Overrides a DD in a procedure
— Is added to a procedure.

Subparameter Definition

Overrides

ddname
Refers to a later DD statement that defines the data set. ddname must match
the ddname of the referenced DD statement.

A job step or procedure step can contain up to five DD statements with
DDNAME parameters. Each DDNAME parameter must refer to a different DD
statement.

If any DCB subparameter appears on both DD statements, the DCB subparameter
on the referenced DD statement overrides the DCB subparameter on the DD
statement that contains DDNAME.

Relationship to Other Parameters

The only DD parameters you can code with the DDNAME parameter are:

DCB=BLKSIZE LIKE
DCB=BUFNO REFDD
DCB=DIAGNS

Do not code the DDNAME parameter on a DD statement with a ddname of
JOBLIB, JOBCAT, or STEPCAT.

Location in the JCL

Place a DD statement containing a DDNAME parameter in a job step or in a
cataloged or in-stream procedure. The referenced DD statement must be later in
the same job step, must be in the calling job step, or must be in a cataloged or
in-stream procedure called by the job step.

Do not use the name of a DDNAME statement more than once within the same
step.

Location of DD Statements for Concatenated Data Sets

To concatenate data sets to a data set defined with a DDNAME parameter, the
unnamed DD statements must follow the DD statement that contains the DDNAME
parameter, not the referenced DD statement that defines the data set.

Errors in Location of Referenced DD Statement

The system treats a DDNAME parameter as though it were a DUMMY parameter
and issues a warning message in the following cases:

 If the job step or called procedure does not contain the referenced DD
statement.

Chapter 12. DD Statement 12-71

DD: DDNAME

» If the referenced DD statement appears earlier in the job step.
Location of DD Statement Requesting Unit Affinity

To use the same device, a DD statement can request unit affinity to an earlier DD
statement by specifying UNIT=AFF=ddname. If a DD statement requests unit
affinity to a DD statement containing a DDNAME parameter, the DD statement
requesting unit affinity must be placed after the referenced DD statement. If the DD
statement requesting unit affinity appears before, the system treats the DD
statement requesting unit affinity as a DUMMY DD statement.

//STEP EXEC PGM=TKM
//DD1 DD DDNAME=DD4
//DD2 DD DSNAME=A,DISP=0LD

//DD4 DD DSNAME=B,DISP=0LD
//DD5 DD UNIT=AFF=DD1

DD1 postpones defining the data set until DD4. DD5 requests unit affinity to DD1.
Because DD1 has been defined when DD5 is processed, the system assigns DD5
to the same device as DD1.

Instead of specifying UNIT=AFF=ddname, both DD statements can specify the
same devices in their UNIT parameters or the same volume serials in their
VOLUME parameters.

Referenced DD Statement

If the DDNAME parameter appears in a procedure with multiple steps, the ddname
on the referenced DD statement takes the form stepname.ddname. For example, if
procedure step STEPCP1 contains:

//INDATA DD DDNAME=DD1

The referenced DD statement in the calling job step is:
//STEPCP1.DD1 DD =

Parameters not Permitted on the Referenced DD Statement
The referenced DD statement must not contain a DYNAM or PATH parameter.

A DD statement that contains a DDNAME parameter must not override a procedure
sysout DD statement that contains an OUTPUT parameter if the referenced DD
statement also contains an OUTPUT parameter.

References to Concatenated Data Sets

If you make a forward reference to a concatenation, the forward reference
resolves to the first data set in the concatenation. If there are no DD statements
between the forward reference and the concatenation, the rest of the data sets in
the concatenation are appended to the first data set in the concatenation. The
following example illustrates this.

12-72 0S/390 V2R10.0 MVS JCL Reference

DD: DDNAME

//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT==

//SYSUT1 DD DDNAME=INPUT

//INPUT DD DSN=TSTDATA1,DISP=SHR
/l DD DSN=TSTDATAZ,DISP=SHR
//SYSUT2 DD SYSOUT=x

//SYSIN DD DUMMY

In this example, SYSUT1 will resolve to the first data set TSTDATA1, defined by
the DDNAME forward reference INPUT. TSTDATAZ2, the second data set in the
DDNAME forward reference INPUT, will be appended to SYSUT1 as well.
IEBGENER will recognize TSTDATA1 and TSTDATAZ2 as input.

If there are any DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
last DD statement preceding the concatenation. For example:

//STEP1 EXEC PGM=IEBGENER

//SYSUT1 DD DDNAME=INPUT
//SYSPRINT DD SYSOUT=*

//SYSUT2 DD SYSOUT=+

//INPUT DD DSN=TSTDATA1,DISP=SHR
/l DD DSN=TSTDATAZ,DISP=SHR
//SYSIN DD DUMMY

In the preceding example, SYSUT1 will resolve to the first data set, TSTDATAT1,
defined in the DDNAME forward reference INPUT. TSTDATA2 will be appended to
SYSUT2, the last DD statement preceding the concatenation. In that example
IEBGENER will only recognize TSTDATA1 as input.

If a concatenated DD is added to a procedure, the remaining concatenated
datasets will be concatenated to the last DD in the step named in an override or
addition (or to the first step if no step was named in an override or addition). Note
that this may result in these concatenated DDs being added to an unexpected DD.
The following example illustrates this.

//TPROC PROC

//S1 EXEC PGM=IEFBR14

//DD1 DD DDNAME=INPUT

//DD2 DD DSN=MYDSN2,DISP=SHR
//DD3 DD DSN=MYDSN3,DISP=SHR
/152 EXEC PGM=IEFBR14

/ /DDA DD DDNAME=INPUT

//DDB DD DSN=MINE2,DISP=SHR
//bDC DD DSN=MINE3,DISP=SHR
/l PEND

//STEP1 EXEC TPROC
//INPUT DD DSN=MYDSN1,DISP=SHR

// DD DSN=MYDSN4,DISP=SHR
//S2.INPUT DD DSN=MINE1,DISP=SHR
// DD DSN=MINE4,DISP=SHR

In the preceding example, the result of the DDNAME forward reference INPUT is:

e In step S1, DD1 resolves to data set MYDSN1 and data set MYDSN4 is
concatenated to data set MYDSNB3.

Chapter 12. DD Statement 12-73

DD: DDNAME

e In step S2, DDA resolves to data set MINE1 and data set MINE4 is
concatenated to data set MINES.

Backward References

A backward reference is a reference to an earlier DD statement in the job or in a
cataloged or in-stream procedure called by a job step. A backward reference is in
the form *.ddname or *.stepname.ddname or *.stepname.procstepname.ddname.
The ddname in the reference is the ddname of the earlier DD statement. If the
earlier DD statement contains a DDNAME parameter, the reference is to the
ddname in the name field of the earlier statement, not to the ddname in the
DDNAME parameter.

The DD statement referenced in a DDNAME parameter cannot refer to a DD
statement between the statement containing the DDNAME parameter and itself.
For example:

//SHOW EXEC PGM=ABLE

//bD1 DD DDNAME=INPUT

//DD2 DD DSNAME=TEMPSPAC,SPACE=(TRK,1),UNIT=SYSDA

//DD3 DD DSNAME=INCOPY,VOLUME=REF=+.DD1,

// DISP=(,KEEP),SPACE=(TRK, (5,2))

//DD4 DD DSNAME=QUTLIST,DISP=0LD

//DD5 DD DSNAME=MESSAGE,DISP=0LD,UNIT=3330,VOLUME=SER=333333
//INPUT DD DSNAME=NEWLIST,DISP=(OLD,KEEP),VOLUME=SER=333333,
/l UNIT=3330

The DDNAME parameter on DD1 refers to DD statement INPUT. The VOLUME
parameter of DD3 specifies a backward reference to DD1, which is the name field
ddname.

DD statement INPUT identifies the volume 333333 in its VOLUME=SER=333333
parameter. DD statement INPUT cannot use a backward reference to the VOLUME
parameter on DD5 because DD5 is between the referring DD1 and the referenced
INPUT.

Examples of the DDNAME Parameter

Example 1

The following procedure step is the only step in a cataloged procedure named
CROWE:

//PROCSTEP EXEC PGM=RECPGM

//DD1 DD DDNAME=WKREC

//P0OD DD DSNAME=OLDREC,DISP=0LD

DD statement DD1 is intended for weekly records in the input stream; these
records are processed by this step. Because the * and DATA parameters cannot be
used in cataloged procedures, the DDNAME parameter is coded to postpone
defining the data set until the procedure is called by a job step. The step that calls
the procedure is:

12-74 0S/390 V2R10.0 MVS JCL Reference

//STEPA EXEC PROC=CROWE
//WKREC DD =*

data
/*

Example 2

DD: DDNAME

When the procedure contains multiple steps, use the form stepname.ddname for
the ddname of the referenced DD statement. For example, the following procedure
steps appear in a cataloged procedure named PRICE:

//STEP1 EXEC PGM=SUGAR
//bD1 DD DDNAME=QUOTES

//STEP2 EXEC PGM=MOLASS
//DD2 DD DSNAME=WEEKB,DISP=0LD

The step that calls the procedure is:

//STEPA EXEC PROC=PRICE
//STEP1.QUOTES DD =*

data
/*

Example 3

When the referenced DD statement is to be a concatenation, the procedure must
already contain the concatenation. (Such as when the referencing DD statement is
to contain in-stream data.) For example, the following procedure step appears in

cataloged procedure NEWONE.

//NEWONE PROC

//STEP1 EXEC PGM=TRYIT

//bD1 DD DDNAME=INSTUFF

/1l DD DSN=0LDSTUFF,DISP=0LD

The step that calls the procedure is:

//STEPA EXEC PROC=NEWONE
//STEP1.INSTUFF DD =

data

/*

Chapter 12. DD Statement

12-75

DD: DEST

The instream data (DDNAME=INSTUFF) is inserted before OLDSTUFF in the
concatenation.

Example 4

In the following example we create a DD concatenation in a procedure using
multiple DDNAME forward references, INPUT1—INPUTS5. In the example, INPUT1
resolves to data set FIRST, INPUT2 resolves to data set SECOND, and INPUT3
resolves to data set THIRD. INPUT4 and INPUT5 resolve to DUMMY.

//ABC PROC
//S1 EXEC PGM=IEFBR14
//DD1 DD DDNAME=INPUT1

/l DD DDNAME=INPUT2
// DD DDNAME=INPUT3
/1l DD DDNAME=INPUT4
// DD DDNAME=INPUT5

//STEP1 EXEC ABC

//INPUT1 DD DSN=FIRST,DISP=SHR
//INPUT2 DD DSN=SECOND,DISP=SHR
//INPUT3 DD DSN=THIRD,DISP=SHR

DEST Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the DEST parameter to specify a destination for a sysout data set. The DEST
parameter can send a sysout data set to a remote or local terminal, a node, a node
and remote workstation, a local device or group of devices, or a node and userid.

Note: Code the DEST parameter only on a DD statement with a SYSOUT
parameter. Otherwise, the system checks the DEST parameter for syntax,
then ignores it.

For more information about USERID and WRITER ID, see |0S/390 MVS JCL User'q

12-76 0S/390 V2R10.0 MVS JCL Reference

DD: DEST

DEST=destination
The destination subparameter for JES2 is one of the following:

LOCAL | ANYLOCAL
name

Nnnnn
NnnRmmmm
NnnnRmmm
NnnnnRmm
Rmmmm

RMmmmm
RMTmmmm
Unnnn
(node,userid)
userid

The destination subparameter for JES3 is one of the following:

ANYLOCAL

device-name
device-number
group-name

nodename
(node,userid)
(nodename.devicename)

Subparameter Definition for JES2 Systems

LOCALIANYLOCAL
Indicates the local node on a local device.

name
Identifies a destination by a symbolic name which is defined by the installation
during JES2 initialization. The name can be, for example, a local device,
remote device, or a userid. The name is 1 through 8 alphanumeric or national
($, #, @) characters.

Nnnnn
Identifies a node. nnnn is 1 through 4 decimal numbers from 1 through 1000.

NnnRmmmm

NnnnRmmm

NnnnnRmm

(node,remote)
Identifies a node and a remote work station connected to the node. The node
number, indicated in the format by n, is 1 through 4 decimal numbers from 1
through 1000. The remote work station number, indicated in the format by m, is
1 through 4 decimal numbers from 1 through 9999. Do not code leading zeros
in n or m. The maximum number of digits for n and m combined cannot exceed
Six.

Note: NnnRO is equivalent to LOCAL specified at node Nn.

Rmmmm

RMmmmm

RMTmmmm
Identifies a remote workstation. mmmm is 1 through 4 decimal nhumbers from 1
through 9999. Note that with remote pooling, the installation may translate this
route code to another route code.

Chapter 12. DD Statement 12-77

DD: DEST

If you send a job to execute at a remote node and the job has a ROUTE
PRINT RMTmmmm statement, JES2 returns the output to RMTmmmm at the
node of origin. For JES2 to print the output at RMTmmmm at the executing
node, code DEST=NnnnRmmm on an OUTPUT JCL statement or sysout DD
statement.

Note: RO indicates any local device.

Unnnn

Identifies a local terminal with special routing. nnnn is 1 through 4 decimal
numbers from 1 through 9999.

If you send a job to execute and the job has a ROUTE PRINT Unnnn
statement, JES2 returns the output to Unnnn at the node of origin.

(node,userid)

Identifies a node and a TSO/E or VM userid at that node. The node is a
symbolic name defined by the installation during initialization; node is 1 through
8 alphanumeric or national ($, #, @) characters. The userid must be defined at
the node; userid for TSO/E is 1 through 7 alphanumeric or national ($, #, @)
characters and for VM is 1 through 8 alphanumeric or national ($, #, @)
characters.

DEST=(node) is valid with a writer-name subparameter in the SYSOUT
parameter; however, DEST=(node,userid) is not valid. Therefore, you can code
SYSOUT=(A,writer-name),DEST=(node), but not
SYSOUT=(A,writer-name),DEST=(node,userid).

Note: You can code DEST=(nodename,Unnnn) here; this syntax is a valid
subset of DEST=(node,userid).

userid

Identifies a userid at the local node.

Note: JES2 initialization statements determine whether or not the node name
is required when coding a userid. See your system programmer for
information regarding how routings will be interpreted by JES2.

Subparameter Definition for JES3 Systems

ANYLOCAL

Indicates any local device that is attached to the global processor.

device-name

Identifies a local device by a symbolic name defined by the installation during
JESS initialization. device-name is 1 through 8 alphanumeric or national ($, #,
@) characters.

device-number

Identifies a specific device by a 3-digit or 4-digit hexadecimal number. Precede
a 4-digit number with a slash (/). A 3-digit number can be specified with or
without a slash.

group-name

Identifies a group of local devices, an individual remote station, or a group of
remote stations by a symbolic name defined by the installation during JES3
initialization. group-name is 1 through 8 alphanumeric or national ($, #, @)
characters.

12-78 0S/390 V2R10.0 MVS JCL Reference

Defaults

Overrides

DD: DEST

nodename
Identifies a node by a symbolic name defined by the installation during JES3
initialization. nodename is 1 through 8 alphanumeric or national ($, #, @)
characters. If the nodename you specify is the same as the node you are
working on, JES3 treats the output as though you specified ANYLOCAL.

(node,userid)
Identifies a node and a TSO/E or VM userid at that node. The node is a
symbolic name defined by the installation during initialization; node is 1 through
8 alphanumeric or national ($, #, @) characters. The userid must be defined at
the node; userid for TSO/E is 1 through 7 alphanumeric or national ($, #, @)
characters and for VM is 1 through 8 alphanumeric or national ($, #, @)
characters.

A userid requires a node; therefore, code DEST=(node,userid). You cannot
code a userid without a node.

DEST=(node) is valid with a writer-name subparameter in the SYSOUT
parameter: however, DEST=(node,userid) is invalid. Therefore, you can code
SYSOUT=(A,writer-name),DEST=(node).

(nodename.devicename)
Identifies a node by a symbolic name defined by the installation during JES3
initialization. nodename is 1 through 8 alphanumeric or national ($, #, @)
characters. devicename identifies a device by a symbolic name defined to that
node by the installation during JESS3 initialization. devicename is 1 through 8
alphanumeric or national ($, #, @) characters.

Use this form of the DEST parameter to override the ORG parameter.

If you do not code a DEST parameter, JES directs the sysout data set to the
default destination for the input device from which the job was submitted.

In a JES3 system, if you do not code a DEST parameter, the default destination is
the submitting location. For jobs submitted through TSO/E and routed to NJE for
execution, the default is the node from which the job was submitted, and the
destination ANYLOCAL.

If a specified destination is invalid, the job fails.
If you've coded the ORG parameter but did not explicitly code a primary

destination, the default primary destination is the node specified in the ORG
parameter, not the submitting node.

The DEST parameter on the sysout DD statement overrides an OUTPUT JCL
DEST parameter.

Chapter 12. DD Statement 12-79

DD: DISP

Relationship to Other Parameters
Code the DEST parameter only on a DD statement with the SYSOUT parameter.

Relationship to Other Control Statements
You can also code an output destination using:

e The OUTPUT JCL statement.
e The JES2 /*OUTPUT and /*ROUTE control statements.
¢ The JES3 //*MAIN, //*FORMAT PR, and //*FORMAT PU control statements.

Because DEST=(node,userid) cannot be coded on JES2 or JES3 control
statements, you must code it, if needed, on a DD or OUTPUT JCL statement.

Example of the DEST Parameter
//J0B01 JOB ,'MAE BIRD',MSGCLASS=B
//STEP1 EXEC PGM=INTEREST
//DEBIT DD SYSOUT=A
//CALIF DD SYSOUT=A,DEST=R555
//FLOR DD SYSOUT=A,DEST=(BOCA,'9212U28")

In this example, the system sends the sysout data set defined by DD statement
DEBIT to the work station that submitted the job, the data set defined by DD
statement CALIF to the remote terminal 555, and the data set defined by DD
statement FLOR to VM userid 9212U28 at node BOCA.

DISP Parameter

Parameter Type
Keyword, optional
Purpose

Use the DISP parameter to describe the status of a data set to the system and tell
the system what to do with the data set after termination of the step or job. You can
specify one disposition for normal termination and another for abnormal termination.

Note: Disposition of the data set is controlled solely by the DISP parameter;
disposition of the volume(s) on which the data set resides is a function of
the volume status when the volume is demounted. If the UNIT parameter
specifies a device, such as a printer or telecommunications device, that
does not involve a data set, do not code the DISP parameter.

If the system obtains unit and volume information for an OLD, MOD, or SHR status,
the data set is treated as if it exists, whether or not it is physically on the device.

When any step of a job requests exclusive control of a data set, the system
converts all requests for shared control of that data set within that job (DISP=SHR)
to requests for exclusive control. One of two methods can be used to request
exclusive control:

e DISP=NEW, DISP=MOD, or DISP=0OLD on a JCL request.

e DISP=NEW, DISP=MOD, or DISP=0OLD on a dynamic allocation request,
including dynamic allocation requests that result from the use of certain utility

12-80 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

control statements. For example, utility control statements that delete/scratch a
data set will result in exclusive use of that data set.

When any step of a job requests exclusive control of a data set (through
DISP=NEW, DISP=MOD, or DISP=0LD), the system converts all requests for
shared control of that data set within that job (DISP=SHR) to requests for exclusive
control.

References

For information about tape data set processing, see [0S/390 DFSMS: Using
|Magnetic Tapes|

Syntax

{DISP=status }
{DISP=([status] [,normal-termination-disp][,abnormal-termination-disp])}

DISP= ([NEW] [,DELETE] [,DELETE])
[oLp] [,KEEP 1 [,KEEP]
[SHR] [,PASS 1 [,CATLG 1]
[MoD] [,CATLG 1 [,UNCATLG]
[, 1 [,UNCATLG]
[,]

¢ You can omit the parentheses if you code only the status subparameter.

¢ If you omit the status subparameter but code subparameters for normal or abnormal termination
disposition, you must code a comma to indicate the absence of NEW. For example,
DISP=(,KEEP) or DISP=(,CATLG,DELETE).

¢ If you omit the second subparameter but code the third, you must code a comma to indicate the
absence of the second subparameter. For example, DISP=(OLD,,DELETE) or DISP=(,,KEEP).

Subparameter Definition

Status Subparameter
NEW
Indicates that a new data set is to be created in this step.

Note: Initialize a new data set to ensure that it is empty.

OLD
Indicates that the data set exists before this step and that this step requires
exclusive (unshared) use of the data set.

If you specify DISP=OLD for an output tape data set and (1) the data set is not
protected by RACF or a password or (2) the data set has no expiration date,
the system does not verify the data set name in the header label.

SHR
Indicates that the data set exists before this step and that other jobs can share
it, that is, use it at the same time. This subparameter can also be coded as
SHARE.

If you specify DISP=SHR for an output tape data set and (1) the data set is not
protected by RACF or a password or (2) the data set has no expiration date,
the system does not verify the data set name in the header label.

Chapter 12. DD Statement 12-81

DD: DISP

MOD
Indicates one of the following:

¢ The data set exists and records are to be added to the end of it. The data
set must be sequential.

* A new data set is to be created.

In either case, MOD specifies exclusive (unshared) use of the data set.

When the data set is opened, the read/write mechanism is positioned after the
last sequential record for an existing data set or at the beginning for a new data
set. For subsequent OPENSs within the same step, the read/write mechanism is
positioned after the last sequential record.

Note: You cannot specify DISP=MOD to extend an ISO/ANSI/FIPS Version 3
tape data set unless the ISO/ANSI/FIPS Version 3 label validation
installation exit allows the extension. For information on using
ISO/ANSI/FIPS Version 3 installation exits, see|0S5/390 DFSMS: Using
[Magnetic Tapes|

If the system cannot find volume information for the data set on the DD
statement, in the catalog, or passed with the data set from a previous step, the
system assumes that the data set is being created in this job step. For a new
data set, MOD causes the read/write mechanism to be positioned at the
beginning of the data set.

To use DISP=MOD to create a new data set, code one of the following:

e No VOLUME=SER or VOLUME=REF parameter on the DD statement. The
data set must not be cataloged or passed from another job step.

e A VOLUME=REF parameter that refers to a DD statement that makes a
nonspecific volume request. (A nonspecific volume request is a DD
statement for a new data set that can be assigned to any volume or
volumes.) One of the following must also be true:

— The DSNAME parameters in the two DD statements must be different.
— The two DD statements must request different areas of the same ISAM
data set.

* In the case of tape, if you do not specify an explicit volume serial number
on the DD statement, the system requests the operator to mount a
"scratch" tape.

For a new generation of a generation data group (GDG) data set (where
(+n) is greater than 0), you may code VOLUME=REF or VOLUME=SER.

For an SMS-managed data set the system ignores the volume.

After the system chooses a volume for a new data set, if the system finds
another data set with the same name on that volume, the system will try to
allocate a different volume. However, SMS-managed data sets require unique
data set names. If a new data set is chosen to be SMS-managed and an
existing SMS-managed data set has the same name, the request fails.

In a JES3 system, if you code DISP=MOD for a multivolume data set and any
of the volumes are JES3-managed, JES3 will not execute the job until all
volumes, including scratch volumes being added, are allocated. Such a job will
wait on the queue until all volumes are allocated.

12-82 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

If you are using DISP=MOD for a non-SMS multi volume data set, and if the
actual end of data is not on the last volume, the new data will still be added to
the last volume and will be unretrievable via normal access methods.

Normal Termination Disposition Subparameter
DELETE
Indicates that the data set is no longer needed if this step terminates normally.

For a DASD data set, DELETE means that the space occupied by that data set
is available for use by other data sets. The system will physically erase the
data set itself only if the erase option of a security product, such as RACF, is in
effect for this data set. If the erase option is not in effect, the data will remain
on the DASD until overwritten by another data set. For information on how to
set the erase option, see the documentation for the security product.

For a tape data set, DELETE does not physically erase the data from the tape
volume. The data will remain on the tape until overwritten by another data set.
If the tape volume is a public volume, specifying DELETE allows the system to
reuse the tape volume for other data sets that require a public volume; the
system may overwrite the data set.

Existing data sets:

 If you set a retention period on the DD RETPD parameter, an existing data
set is deleted only if its retention period is passed; otherwise the data set is
kept.

e If you set an expiration date on the DD EXPDT parameter, an existing data
set is deleted if the expiration date has passed.

You can override the expiration date or retention period for SMS-managed
DASD data sets using the OVRD_EXPDT(YES) parameter in the
IGDSMSxx SYS1.PARMLIB member. In that case, the data set will be
deleted whether or not the data set has expired or the retention period has
passed. See|0S/390 MVS Initialization and Tuning Reference for
information on the IGDSMSxx parmlib member.

New data sets:

A new data set is deleted at the end of the step even though a retention period
or expiration date is also specified. See the DD EXPDT or RETPD parameters.

If the system retrieves volume information from the catalog because the DD
statement does not specify VOLUME=SER or VOLUME=REF, then DELETE
implies UNCATLG: the system deletes the data set and removes its catalog
entry.

KEEP
Indicates that the data set is to be kept on the volume if this step terminates
normally.

Without SMS, only KEEP is valid for VSAM data sets. VSAM data sets should
not be passed, cataloged, uncataloged, or deleted.

With SMS, all dispositions are valid for VSAM data sets; however, UNCATLG is
ignored.

For new SMS-managed data sets, KEEP implies CATLG.

Chapter 12. DD Statement 12-83

DD: DISP

PASS

Indicates that the data set is to be passed for use by a subsequent step in the
same job.

With SMS, the system replaces PASS with KEEP for permanent VSAM and
non-VSAM data sets. When you refer to the data set later in the job, the
system obtains data set information from the catalog.

Notes:

1. A data set can be passed only within a job.

2. If you specify DISP=(NEW,PASS) but, at the end of the job, one or more
data sets were not received by any job step, then the maximum number of
DD statements you can specify decreases by one. (The size of the TIOT
controls how many DD statements are allowed per job step.) For example,
if the current limit is 1635 DD statements, you can specify
DISP=(NEW,PASS), and up to 1634 DD statements.

3. Coding PASS does not ensure that the operator will not unload the volume
or that the system will not demount it to accommodate another job step
allocation. Either can occur when the device on which the volume is
mounted is not allocated to the job step that specified PASS or, for
unlabaled tapes, when the volume requires verification. If the system does
demount a volume for which RETAIN was requested, it will do so by
issuing message IEF234E R (retain) for that volume. When the system
reaches the next step requiring that volume, it will request the operator to
remount the volume on an available device of the appropriate type.

CATLG

Indicates that, if the step terminates normally, the system is to place an entry
pointing to the data set in the system or user catalog. For CVOL catalogs, the
system creates any missing index levels. Note that the data set is kept.

An unopened tape data set is cataloged, unless the volume request is
nonspecific or unless the data set is allocated to a dual-density tape drive but
no density is specified. A nonspecific volume request is a DD statement for a
new data set that can be assigned to any volume or volumes.

For information about the rules for cataloged data set names, see|0S5/390
[DESMS Access Method Services for Catalogs}

UNCATLG

Indicates that, if the step terminates normally, the system is to delete (1) the
entry pointing to the data set in the system or user catalog and (2) unneeded
indexes, except for the highest level entry. Note that the data set is kept.

With SMS, UNCATLG is ignored for SMS-managed data sets and VSAM data
sets (KEEP is implied).

Abnormal Termination (Conditional) Disposition Subparameter
DELETE

Indicates that the data set’s space on the volume is to be released if this step
terminates abnormally. The space can be used for other data sets; the data set
is not erased from the space.

Existing data sets:

12-84 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

 If you set a retention period on the DD RETPD parameter, an existing data
set is deleted only if its retention period is passed; otherwise the data set is
kept.

» If you set an expiration date on the DD EXPDT parameter, an existing data
set is deleted if the expiration date has passed.

You can override the expiration date or retention period for SMS-managed
DASD data sets using the OVRD_EXPDT(YES) parameter in the
IGDSMSxx SYS1.PARMLIB member. In that case, the data set will be
deleted whether or not the data set has expired or the retention period has
passed. See|0S/390 MVS Initialization and Tuning Reference for
information on the IGDSMSxx parmlib member.

New data sets:

A new data set is deleted at the end of the step even though a retention period
or expiration date is also specified. See the DD EXPDT or RETPD parameters.

If the system retrieves volume information from the catalog because the DD
statement does not specify VOLUME=SER or VOLUME=REF, then DELETE
implies UNCATLG: the system deletes the data set and removes its catalog
entry.

For a cataloged, passed data set, the user catalog is not updated.

KEEP
Indicates that the data set is to be kept on the volume if this step terminates
abnormally.

Without SMS, only KEEP is valid for VSAM data sets. VSAM data sets should
not be passed, cataloged, uncataloged, or deleted.

With SMS, all dispositions are valid for VSAM data sets; however, UNCATLG is
ignored.

For new SMS-managed data sets, KEEP implies CATLG.

CATLG
Indicates that, if the step terminates abnormally, the system is to place an entry
pointing to the data set in the system or user catalog. For CVOL catalogs, the
system creates any missing index levels. Note that the data set is kept.

An unopened tape data set is cataloged, unless the volume request is
nonspecific or unless the data set is allocated to a dual-density tape drive but
no density is specified.

For a cataloged, passed data set, the user catalog is not updated. A passed,
not received data set is not cataloged if the data set name has a first-level
qualifier of a catalog name or alias.

UNCATLG
Indicates that, if this step terminates abnormally, the system is to delete (1) the
entry pointing to the data set in the system or user catalog and (2) unneeded
indexes, except for the highest level entry. Note that the data set is kept.

For a cataloged, passed data set, the user catalog is not updated.

With SMS, UNCATLG is ignored for SMS-managed data sets and VSAM data
sets (KEEP is implied).

Chapter 12. DD Statement 12-85

DD: DISP

Defaults
 If you omit the status subparameter, the default is NEW.

 If you omit the normal termination disposition subparameter, the default is
DELETE for a NEW data set or KEEP for an existing data set.

 If you omit the abnormal termination disposition subparameter, the default is
the disposition specified or implied by the second subparameter. However, if
the second subparameter specified PASS, the default abnormal termination
disposition is DELETE for a NEW data set or KEEP for an existing data set.

* If you omit the DISP parameter, the default is a NEW data set with a
disposition of DELETE for both normal and abnormal termination disposition.
Thus, you can omit the DISP parameter for a data set that is created and
deleted during a step.

Relationship to Other Parameters
Do not code the following parameters with the DISP parameter.

* DDNAME SYSOUT
BURST DYNAM

CHARS FLASH

COPIES MODIFY

DATA QNAME

Disposition of QSAM Data Sets

Do not code DISP=MOD if the data control block (DCB) specifies RECFM=FBS and
the data set is processed by QSAM. If you do and a block is shorter than the
specified block size, QSAM assumes that the short block is the last block and starts
end-of-file processing. By this action, QSAM can embed short blocks in your data
set and so affect the number of records per track.

Disposition of Generation Data Sets

See Appendix B in|0S/390 MVS JCL User's Guidelfor additional information about
disposition processing for generation data sets.

Disposition of Temporary Data Sets
Specify a normal termination disposition of PASS or DELETE for a temporary data
set or for a data set with a system-generated name, that is, when a DSNAME
parameter is omitted from the DD statement.

For a temporary data set name, the system ignores any abnormal termination
disposition specified in the third subparameter.

Disposition of Partitioned Data Sets (PDSs and PDSESs)

When you specify DISP=MOD or DISP=NEW for a partitioned data set (PDS) or
partitioned data set extended (PDSE), and you also specify a member name in the
DSNAME parameter, the member name must not already exist. If the member
name already exists, the system terminates the job.

When you specify DISP=OLD for a PDS or a PDSE, and you also specify a
member name in the DSNAME parameter, the data set must already exist. If the
member name already exists and the data set is opened for output, the system
replaces the existing member with the new member. If the member name does not

12-86 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

already exist and the data set is opened for output, the system adds the member to
the data set.

When you specify DISP=MOD for a PDS or a PDSE, and you do not specify a
member name, the system positions the read/write mechanism at the end of the
data set. The system does not make an automatic entry into the directory.

When you specify DISP=MOD for a PDS or a PDSE, and you do specify a member
name, the system positions the read/write mechanism at the end of the data set. If
the member name already exists, the system terminates the job.

When you specify DISP=SHR for a partitioned data set extended (PDSE) and also
specify a member name, then:

» |If the member name exists, the member can have one writer or be shared by
multiple readers, or

» |If the member name does not exist, the member can be added to the data set.
Thus, multiple jobs can access different members of the data set and add new
members to the data set concurrently — but concurrent update access to a
specific member (or update and read by other jobs) is not valid.

Adding a Volume to a Cataloged Data Set

If you want to add a volume to a cataloged data set and have it properly cataloged
after it is kept or passed, code the volume count subparameter of the VOLUME
parameter to make the system use the values in the system catalog to process the
data set. The following DD statement shows how to keep and extend a cataloged
data set using the system catalog. Assume that this data set was created with a
volume count of 2.

//DDEX2 DD DSNAME=OPER.DATA,DISP=(MOD,KEEP),
// VOLUME=(,,,3) ,UNIT=(,P)

The VOLUME parameter references the system catalog for volume information
about the data set and increases the maximum number of volumes for
OPER.DATA. Because the UNIT parameter requests parallel mounting, the system
must allocate the same number of units as the number of volumes in the VOLUME
parameter; in this case, 3.

The following is an example of the messages in the job log after the job completes.

IEF2851 OPER.DATA KEPT
IEF2851 VOL SER NOS= 333001,333002,333003.
TIEF285I OPER.DATA RECATALOGED

IEF2851 VOL SER NOS= 333001,333002,333003.
Non-SMS-managed Data Sets

If you do not reference the catalog when adding a volume to a cataloged data set,
the system does not update the catalog with the newly referenced volumes.

Chapter 12. DD Statement 12-87

DD: DISP

How the System Determines the Last Volume

If a data set that is not a striped data set resides on multiple volumes, you can
code a volume sequence number to specify the volume on which reading or writing
is to begin. If you do not code a volume sequence number and the data set is not
striped, the system must identify the volume that contains the logical end of the
data. Data might not have been written on all the volumes. After the system
identifies the last volume, it positions the read/write mechanism on that volume.

In DASD and tape data set labels there is an indicator on the last volume
containing user data. When you do not specify a volume sequence number, the
system looks in the data set label for the indicator that identifies the last volume,
and then selects the volume on which to begin writing as follows:

SMS-managed DASD

The system tests the data set label on the first volume in the list. If the label
indicates it contains the end of the data set, the system selects that volume.
Otherwise, it checks each subsequent volume until it finds one that has a
last-volume indicator. (To begin writing, the system will not select later volumes that
might also have the last-volume indicator by virtue of having previously contained
parts of the data set.)

Non-SMS-managed DASD

The system tests the last volume in the list. If it contains a label for the data set,
and the label indicates it is the last volume of the data set, the system selects that
volume to begin writing. If that volume does not have a label for the data set or that
label does not have the last-volume indicator, the system checks the first and
subsequent volumes until it finds a last-volume indicator or until it tests the
second-to-last volume. If the last volume in the list once had the end of the data set
but now the data set requires fewer volumes, the system selects the wrong volume,
and any data you add will not be retrievable by normal access.

Tape

For tapes with IBM standard or ANSI/ISO/FIPS labels, the system reads trailer
labels on each volume starting with the first volume, and selects the first volume
that ends with an end-of-file label instead of an end-of-volume label. For unlabeled
tapes and those with the BLP option, the system selects the first volume.

DISP=MOD for a Multivolume Data Set

Minimizing Tape Mounts

When you code DISP=MOD and the volume information is for a multivolume data
set, normally the first volume(s) will be mounted on the devices(s) allocated. Then,
if the data set is opened for output, OPEN starts with the last volume. If the number
of tape volumes is more than the number of allocated devices, the system asks the
operator to demount the first volume(s) and mount the last. To have the last tape
volume mounted without first mounting and then demounting the earlier volume(s),
code VOLUME=REF or DEFER in the UNIT parameter, or a volume sequence
number in the VOLUME parameter.

12-88 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

Extending on a Volume Other Than the Last

When you code DISP=MOD for a multivolume data set, use the volume count and

volume sequence number subparameters of the VOLUME parameter if you want to
keep the system from positioning the read/write mechanism after the last record on
the last volume. For example:

//DDEX1 DD DSNAME=OPER.DATA,DISP=(MOD,KEEP),VOLUME=(,,1,2)

The volume sequence number of 1 specifies that you want to use the first volume,
and the volume count of 2 specifies that the data set requires two volumes.

Effect of DCB=dsname Parameter

If the DCB parameter refers to a cataloged data set, the system obtains the volume
sequence number from the label of the data set, unless the volume sequence
number is coded on the DD statement.

Thus, for the following DD statement, even though DISP=MOD is specified, the
system positions the read/write mechanism after the last record on the volume
specified in the volume sequence number in the label; this volume may or may not
be the last volume.

//DD1 DD DSNAME=MULTI1,DISP=MOD,DCB=CATDD

To control which volume is processed, code a volume sequence number.
//DD2 DD DSNAME=MULTI2,DISP=MOD,DCB=CATDD,VOLUME=(,,2)

Summary of Disposition Processing

Figure 12-1 (Page 1 of 3). Summary of Disposition Processing

DISP Subparameters: Disposition (If Data Set was Allocated):
Status Normal Abnormal At Normal At Abnormal End of Step At End of
Tmeton | Tomneton | Eneersier [T sep T wiwer |
tspositl Isposttl Abnormally Allocation
Terminated Failed in
Step
NEW none deleted deleted
permanent
data set KEEP kept kept deleted
or MOD DELETE none deleted deleted
treated CATLG cataloged cataloged
as new
PASS passed passed passed deleted
DELETE If all steps
KEEP terminated
CATLG normally:
UNCATLG deleted
If a step
PASS passed passed passed terminated
abnormally:
third
subparameter
disposition
DELETE KEEP second kept
KEEP subparameter
CATLG DELETE disposition deleted deleted
UNCATLG CATLG cataloged

Chapter 12. DD Statement 12-89

DD: DISP

Figure 12-1 (Page 2 of 3). Summary of Disposition Processing

DISP Subparameters:

Disposition (If Data Set was Allocated):

Status Normal Abnormal At Normal At Abnormal End of Step At End of
Termination Termination End of Step Job
Disposition Disposition Step If Later
spositio spositio Abnormally Allocation
Terminated Failed in
Step
NEW none DELETE deleted
temporary KEEP
data set DELETE CATLG deleted deleted
PASS UNCATLG passed deleted
NEW DELETE DELETE
data set in KEEP KEEP
step to be PASS CATLG deleted
automatically CATLG UNCATLG
restarted UNCATLG
NEW DELETE DELETE kept, if being
data set in KEEP KEEP used when
step to be PASS CATLG checkpoint
restarted at CATLG UNCATLG was taken
checkpoint UNCATLG
OLD or SHR none ‘ ‘ kept
ept ept
or MOD KEEP p p
treated
as old DELETE deleted deleted
CATLG cataloged or, cataloged or,
none if new volumes | if new volumes
were added, were added,
recataloged recataloged
UNCATLG uncataloged uncataloged
PASS passed passed passed kept
OLD or SHR PASS DELETE passed passed passed If all steps
or MOD KEEP terminated
treated CATLG normally:
as old UNCATLG kept, if
(continued) originally old;
deleted, if
originally new
If a step
terminated
abnormally:
third
subparameter
disposition
DELETE KEEP second kept kept, if step
KEEP parameter was receiving
CATLG DELETE disposition deleted originally
UNCATLG CATLG cataloged or, old data set;
if new volumes | deleted, if
were added, step was
recataloged receiving
UNCATLG uncataloged originally
new data set
OLD none none deleted, if deleted, if
permanent data set was data set was
data set originally originally
passed to new; kept, if new; kept, if
this job step originally old originally old

12-90 0S/390 V2R10.0 MVS JCL Reference

DD: DISP

Figure 12-1 (Page 3 of 3). Summary of Disposition Processing

DISP Subparameters: Disposition (If Data Set was Allocated):
Status Normal Abnormal At Normal At Abnormal End of Step At End of
Termination Termination End of Step Job
Disposition Disposition Step If Later
Abnormally Allocation
Terminated Failed in
Step
OLD DELETE DELETE kept
data set in KEEP KEEP
step to be PASS CATLG
automatically CATLG UNCATLG
restarted UNCATLG
OoLD DELETE DELETE kept, if being
data set in KEEP KEEP used when
step to be PASS CATLG checkpoint
restarted at CATLG UNCATLG was taken
checkpoint UNCATLG

Examples of the DISP Parameter
Example 1

//DD2 DD DSNAME=FIX,UNIT=3420-1,VOLUME=SER=44889,

/1

DISP=(OLD, ,DELETE)

DD statement DD2 defines an existing data set and implies by the omitted second
subparameter that the data set is to be kept if the step terminates normally. The
statement requests that the system delete the data set if the step terminates

abnormally.

Example 2

//STEPA EXEC PGM=FILL

//DD1 DD DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=3350,

// VOLUME=SER=LOCAT3,SPACE=(TRK, (80,15)),DISP=(,PASS)
//STEPB EXEC PGM=CHAR

//DD2 DD DSNAME=XTRA,DISP=0LD

//DD3 DD DSNAME=x,STEPA.DD1,DISP=(OLD,PASS,DELETE)
//STEPC EXEC PGM=TERM

//DD4 DD DSNAME=x,STEPB.DD3,DISP=(0LD,CATLG,DELETE)

DD statement DD1 defines a new data set and requests that the data set be
passed. If STEPA abnormally terminates, the data set is deleted because it is a
new data set, the second subparameter is PASS, and an abnormal termination
disposition is not coded.

DD statement DD3 in STEPB receives this passed data set and requests that the
data set be passed. If STEPB abnormally terminates, the data set is deleted
because of the third subparameter of DELETE.

DD statement DD4 in STEPC receives the passed data set and requests that the
data set be cataloged at the end of the step. If STEPC abnormally terminates, the
data set is deleted because of the abnormal termination disposition of DELETE.

DD statement DD2 defines an old data set named XTRA. When STEPB terminates,

normally or abnormally, this data set is kept.

Chapter 12. DD Statement 12-91

DD: DLM

Example 3

//SMSDD5 DD DSNAME=MYDS5.PGM,DATACLAS=DCLASO5,STORCLAS=SCLASO5,
// DISP=(NEW,KEEP)

DD statement SMSDD5 defines a new SMS-managed data set and requests that
the data set be kept (which implies that it be cataloged).

Example 4
//SMSDD7 DD DSNAME=MYDS7.PGM,DISP=(O0LD,UNCATLG)

DD statement SMSDD7 defines an existing SMS-managed data set (the data set
had been assigned a storage class when it was created) and requests that the data
set be uncataloged. However, the data set is kept because UNCATLG is ignored
for SMS-managed data sets.

DLM Parameter

Parameter Type
Keyword, optional
Purpose

Use the DLM parameter to specify a delimiter to terminate this in-stream data set.
When the DLM parameter assigns a different delimiter, the in-stream data records
can include standard delimiters, such as /* and //, in the data.

In a JES2 system, when the DLM delimiter appears on a DD * statement, either
the assigned delimiter or // ends the input data set. When the DLM delimiter
appears on a DD DATA statement, only the assigned delimiter ends the input data
set.

In a JES3 system, when the DLM delimiter appears on either a DD * or DD DATA
statement, only the assigned delimiter ends the input data set.

Note: When the DLM delimiter overrides any implied delimiter, you must terminate
the data with the DLM characters. Otherwise, the system keeps reading
until the reader is empty.

Except for the JES2 /*SIGNON and /*SIGNOFF statements, the system does not
recognize JES2 and JES3 statements in an input stream between the DLM
parameter and the delimiter it assigns. The JES2 /*SIGNON and /*SIGNOFF
statements are processed by the remote work station regardless of any DLM
delimiter.

Considerations for an APPC Scheduling Environment

The DLM parameter has no function in an APPC scheduling environment. If you
code DLM, the system will check it for syntax and ignore it.

12-92 0S/390 V2R10.0 MVS JCL Reference

DD: DLM

Syntax

DLM=delimiter

¢ If the specified delimiter contains any special characters, enclose it in apostrophes. In this case,
a special character is any character that is neither alphanumeric nor national ($, #, @).

Failing to code enclosing apostrophes produces unpredictable results.

¢ If the delimiter contains an ampersand or an apostrophe, code each ampersand or apostrophe
as two consecutive ampersands or apostrophes. Each pair of consecutive ampersands or
apostrophes counts as one character.

e The DLM parameter can have a null value only when coded on a DD which either:

— Overrides a DD in a procedure
— Is added to a procedure.

Subparameter Definition

delimiter
Specifies two characters that indicate the end of this data set in the input
stream.

Default

If you do not specify a DLM parameter, the default is the /* delimiter statement.

If the system finds an error on the DD statement before the DLM parameter, it does
not recognize the value assigned as a delimiter. The system reads records until it
reads a record beginning with /* or //.

Relationship to Other Parameters
Code the DLM parameter only on a DD statement with the * or DATA parameter.

The DLM parameter has meaning only on statements defining data in the input
stream, that is, DD * and DD DATA statements. If DLM is specified on any other
statement, a JCL error message is issued.

Invalid Delimiters
If the delimiter is not two characters:

e For JES2, the delimiter is not recognized. The in-stream data set is terminated
when a record starting with // or /* is read. The system fails the job due to the
invalid delimiter.

¢ For JES3, if an incorrect number of characters is coded, JES3 terminates the
job.

Example of the DLM Parameter
//DD1 DD *,DLM=AA
data
AA
The DLM parameter assigns the characters AA as the delimiter for the data defined

in the input stream by DD statement DD1. For JES2, the characters // would also

Chapter 12. DD Statement 12-93

DD: DSID

serve as valid delimiters since a DD * statement was used. JES3 accepts only the
characters specified for the DLM parameter as a terminator for DD * or DD DATA.

DSID Parameter

Parameter Type
Keyword, optional
Purpose

Use the DSID parameter to specify the data set identifier of an input or output data
set on a diskette of the 3540 Diskette Input/Output Unit.

An input data set is read from a 3540 diskette by a diskette reader program, and an
output data set is written on a 3540 diskette by a diskette writer, which is an
external writer.

To read a data set from a 3540 diskette, the DD statement must contain:
e A DSID parameter.
e An * or DATA parameter, to begin the input stream data set.

To write a data set on a 3540 diskette, the DD statement must contain:

e A DSID parameter.
e A SYSOUT parameter that specifies the output class that the diskette writer
processes and the name of the diskette writer.

Also, a system command, from the operator or in the input stream, must start the
diskette writer before this DD statement is processed.

Note: The system ignores the DSID parameter on a DD *, DD DATA, or a DD
statement with the SYSOUT parameter, except when a diskette reader or
writer processes the JCL.

References

For more information about associated data sets, see 3540 Programmer's
Reference. For information about external writers, see [0S/390 JES2 Initialization
[and Tuning Guide or [0S/390 JES3 Initialization and Tuning Guide]

Syntax

DSID= {id }
{(id, [VD)}

¢ You can omit the parentheses if you code only an id.
¢ Null positions in the DSID parameter are invalid.

12-94 0S/390 V2R10.0 MVS JCL Reference

DD: DSNAME

Subparameter Definition

id Specifies the data set identifier. The id is 1 through 8 characters. The
characters must be alphanumeric, national ($, #, @), a hyphen, or a left
bracket. The first character must be alphabetic or national ($, #, @).

V Indicates that the data set label must have been previously verified on a 3741
Data Station/Workstation. This subparameter is required only on a SYSIN DD
statement.

Relationship to Other Parameters
Do not code the following parameters with the DSID parameter.

BURST FLASH

CHARS MODIFY
DDNAME MVSGP
DYNAM QNAME

For 3540 Diskette Input/Output Units

A DSID parameter on a DD *, DD DATA, or sysout DD statement is ignored except
when detected by a diskette reader as a request for an associated data set. See
3540 Programmer's Reference.

On a DD * or DD DATA statement processed by a diskette reader, you can specify
DSID, VOLUME=SER, BUFNO, and LRECL to indicate that a diskette data set is to
be merged into the input stream following the DD statement.

Example of the DSID Parameter
//J0B1 JOB ,,MSGLEVEL=(1,1)
//STEP EXEC PGM=AION
//SYSIN DD *,DSID=(ABLE,V),VOLUME=SER=123456,
// DCB=LRECL=80
//SYSPRINT DD SYSOUT=E,DCB=LRECL=128,DSID=BAKER

In this example, the SYSIN DD statement indicates that the input is on diskette
123456 in data set ABLE and must have been verified. The output will be written
on a diskette in data set BAKER.

DSNAME Parameter

Parameter Type

Keyword, optional

Purpose

Use the DSNAME parameter to specify the name of a data set. For a new data set,
the specified name is assigned to the data set; for an existing data set, the system

uses the name to locate the data set.

References

Data sets are described in |0S/390 DFSMS: Using Data Setd.

Chapter 12. DD Statement 12-95

DD: DSNAME

In a DFSMS-active environment, the names of all data sets that are to be cataloged
or SMS-managed must conform to the rules for cataloged data set names. For
information about the rules for cataloged data set names, refer to either[0S/394
IDFSMS Access Method Services for Catalogs

Syntax

{DSNAME} =name
{DSN }

name for permanent data set:
dsname
dsname (member)
dsname (generation)
dsname(area)
name for temporary data set:
&&dsname
&&dsname (member)
&&dsname (area)
name for in-stream or sysout data set:
&&dsname
name copied from earlier DD statement:
*.ddname
*.stepname.ddname
*,stepname.procstepname.ddname

name for dummy data set:

NULLFILE

¢ You can abbreviate DSNAME as DSN.

¢ Avoid starting a data set name with JES or SYS1. The system uses these characters for
system data sets.

¢ |f the data set name begins with a blank character, the system assigns the data set with a
unique temporary data set name, and ignores the name specified on the DSNAME parameter

¢ The system ignores blank characters at the end of a data set name.

¢ Blanks can be included in a data set name if the name is enclosed in apostrophes, such as
DSNAME='AB CD'. However, do not code blanks in the name for an in-stream or sysout data
set; for example, SYSOUT=P,DSNAME='&&AB CD' is not valid.

¢ If the data set is to be managed through SMS, you cannot enclose the data set name in
apostrophes. However, the following exception applies: You can enclose the data set name on
the DSNAME parameter in apostrophes if the data set is to be assigned to, or already resides
on, an SMS-managed mountable tape volume. This exception applies only if DFSMS/MVS 1.1
or later is installed.

¢ Any data set name enclosed in apostrophes on the DSNAME parameter will be treated as an
unqualified name. Data sets with an unqualified name cannot be cataloged.

¢ The system does not check data set names enclosed in apostrophes for valid characters or
valid length. When SMS is not installed or active incorrect characters or length result in data set
allocation, but the data set is not cataloged. When SMS is active, it will fail the job for incorrect
characters or length.

12-96 0S/390 V2R10.0 MVS JCL Reference

DD: DSNAME

Non-Significant Special Characters: When a data set name contains special characters that are
not significant to the system, other than hyphens, enclose it in apostrophes. For example,
DSNAME='DS/29"'.

Code each apostrophe that is part of the data set name as two consecutive apostrophes. For
example, code DAYS'END as DSNAME='DAYS' 'END".

The system ignores blank characters at the end of a data set name, even if the data set name is
enclosed in apostrophes.

Significant Special Characters: The following special characters are significant to the system. Do
not enclose them in apostrophes.

On a DD statement in a cataloged or in-stream procedure, if the data set name is a symbolic
parameter, do not enclose it in apostrophes. If it is enclosed in apostrophes, the system performs
correct substitution only if the symbolic parameter enclosed in apostrophes is preceded by a
symbolic parameter not enclosed in apostrophes.

The data set name should not contain the 44 special characters (X'04') created by the 12-4-9
multiple punch or any operation that converts the value of characters to X'04'.

¢ Periods to indicate a qualified data set name. However, you must enclose in apostrophes a
period immediately before a right parenthesis, immediately after a left parenthesis, or
immediately before a comma; for example, DSNAME="(.ABC)' and DSNAME='(ABC.)' and
DSNAME='A.B.C.".

¢ Double ampersands to identify a temporary data set name. Note that if you use apostrophes,
DSNAME='&&AB' and DSNAME='&AB' refer to the same data set.

¢ Double ampersands to identify an in-stream or sysout data set name.

¢ Parentheses to enclose the member name of a partitioned data set (PDS) or partitioned data
set extended (PDSE), the area name of an indexed sequential data set, or the generation
number of a generation data set.

¢ Plus (+) or minus (-) sign to identify a generation of a generation data group.

¢ The asterisk to indicate a backward reference.

Subparameter Definition
The data set names you specify on DSNAME are described in the following topics:

Data Set Name for Permanent Data Set

Data Set Name for Temporary Data Set

Data Set Name for In-Stream or Sysout Data Set
Data Set Name Copied from Earlier DD Statement
Data Set Name for Dummy Data Set

Data Set Name for Permanent Data Set
Assign a permanent data set either an unqualified or a qualified name:

Unqualified Name

1 through 8 alphanumeric or national ($, #, @) characters, a hyphen, or a character
X'CO0'. The first character must be alphabetic or national ($, #, @). For example,
DSNAME=ALPHA is an unqualified data set name.

For the characters allowed in ISO/ANSI/FIPS tape data set names, see information

about label definition and organization in [0S/390 DFSMS: Using Magnetic Tapes

Chapter 12. DD Statement 12-97

DD: DSNAME

Qualified Name

Multiple unqualified names joined by periods. Each qualifier is coded like an
unqualified name; therefore, the name must contain a period after every 8
characters or fewer. For example, DSNAME=ALPHA.PGM is a qualified data set
name. The maximum length of a qualified data set name is:

e 44 characters, including periods.
e For a generation data group, 35 characters, including periods.

e For an output tape data set, 17 characters, including periods. If longer than 17
characters, only the rightmost 17 characters, excluding trailing blanks, are
written to the tape header label. For more information, see [0S/390 DFSMS]
|Using Magnetic Tapes|.

Name for RACF-Protected Data Set

The OS/390 Security Server, which includes RACF, expects the data set name to
have a high-level qualifier that is defined to RACF. See the|0S/390 SecureWay|
|Security Server RACF Security Administrator's Guide for details. RACF uses the
entire data set name, from 1 through 44 characters, when protecting a tape data
set.

Cataloged Data Set Name
For information about the rules for cataloged data set names, see|05/390 DFSMS|
[Access Method Services for Catalogd.

dsname
Specifies a data set name.

dsname(member)
Specifies the name of permanent partitioned data set (PDS) or partitioned data
set extended (PDSE), and the name of a member within that data set.

member
1 to 8 alphanumeric or national characters, or a character X'CO'. The first
character must be alphabetic, national, +, or . If the first character is + or
-, the member is a part of a generation data group.

dsname(generation)
Specifies the name of a generation data group (GDG) and the generation
number (zero or a signed integer) of a generation data set within the GDG.

Note: A VSAM data set cannot be a generation data set.

generation

e The first character of a relative generation number is +, —, or 0.

e All characters of a relative generation number that follow the +, -, or 0
must be numeric (0 through 9).

e The numeric portion (not + or -) of a relative generation number must
be expressed in 1 to 3 numeric characters. For example, +100, -002,
+4, -09, 000.

* A relative generation number cannot exceed 255.

12-98 0S/390 V2R10.0 MVS JCL Reference

DD: DSNAME

To retrieve all generations of a generation data group, omit the generation
number.

dsname(area)
Specifies the name of a permanent indexed sequential data set and an area of
the data set. The area-name is INDEX, PRIME, or OVFLOW.

If you define an indexed sequential data set on only one DD statement, omit
the area name or code it as PRIME. For example, DSNAME=dsname or
DSNAME=dsname(PRIME).

To retrieve an indexed sequential data set, omit the area name.

Data Set Name for Temporary Data Set

A temporary data set is a data set that you create and delete within a job. (For
information about coding data set names with the DD *, DATA, and SYSOUT
parameters, see "Data Set Name for In-Stream or Sysout Data Set.")

Note: SMS manages a temporary data set if you specify a storage class (with the
DD STORCLAS parameter) or if an installation-written automatic class
selection (ACS) routine selects a storage class for the temporary data set.

When you define a temporary data set, you can code the DSNAME parameter or
omit it; in either case, the system generates a qualified name for the temporary
data set.

When you use DSNAME for a temporary data set, code the name as two
ampersands (&&) followed by a character string 1 to 8 characters in length:

* The first character following the ampersands must be alphabetic or national.

e The remaining characters must be alphanumeric or national.
The format of the qualified name the system generates depends on whether or not
you specified a data set name on the DSNAME parameter:

e All temporary data set names begin as follows:
SYSyyddd.Thhmmss.RAGQO. jjobname

where:

vy indicates the year

ddd indicates the Julian day
hh indicates the hour

mm indicates the minute

ss indicates the second

jjobname indicates the name of the job

Date fields in the system-generated name reflect when the job containing the
request (or the dynamic allocation request) was allocated. Time fields in the
system-generated name reflect when the job started (or the time of a dynamic
allocation request).

 If you do not specify a data set name, the full format of the temporary data set
name is:

SYSyyddd.Thhmmss.RAQ0OO. jjobname.Rggnnnn

where:
agg 01 or, in a sysplex, the system identifier
nnnn a number that is unique within a system

Chapter 12. DD Statement 12-99

DD: DSNAME

 If you do specify a data set name, the full format of the temporary data set
name is:

SYSyyddd.Thhmmss.RAQ0O. jjobname.name.Hgg

where:
name the name you specified as &&name on the DSNAME parameter
(e]¢] 01 or, in a sysplex, the system identifier.

If you use DSNAME, note that the system-generated qualified name for the
temporary data set will not be unique under the following conditions:

e Multiple tasks or APPC transactions having identical jobnames execute at
exactly the same time, and

e The tasks or transactions contain DD statements with identical temporary data
set names.

To ensure that a temporary data set name is unique, do not code a temporary data
set name. Allow the system to assign one.

Only the job that creates a temporary data set has access to it to read and write
data and to scratch the data set.

Note: In general, the system treats a single ampersand (&) followed by a
character string of 1 to 8 characters as a symbolic parameter. (See [Using]
[System Symbols and JCL Symbols” on page 5-13|) However, if you code a
data set name as a symbolic parameter (by coding DSNAME=&XxXXXXxX),
and do not assign a value to or nullify the symbolic parameter, the system
will process it as a temporary data set name.

&&dsname
Specifies the name of a temporary data set.

&&dsname(member)
Specifies the name of a temporary partitioned data set (PDS) or partitioned
data set extended (PDSE) and a member within that data set.

member
1 - 8 alphanumeric or national characters, or a character X'C0'. The first
character must be alphabetic or national.

&&dsname(area)
Specifies the name of a temporary indexed sequential data set and an area of
the data set. The area name is INDEX, PRIME, or OVFLOW.

If you define an indexed sequential data set on only one DD statement, omit
the area name or code it as PRIME. For example, DSNAME=&&dsname or
DSNAME=&&dsname(PRIME).

Data Set Name for In-Stream or Sysout Data Set

Use the DSNAME parameter to assign a data set name to an in-stream data set
(defined with the DD * or DD DATA parameter) and to a sysout data set (defined
with the DD SYSOUT parameter). When defining an in-stream or sysout data set,
you can code the DSNAME parameter or omit it; if omitted, the system generates a
name for the data set.

12-100 0S/390 V2R10.0 MVS JCL Reference

DD: DSNAME

The data set name for in-stream and sysout data sets consists of two ampersands
(&&) followed by one through eight 8 alphanumeric or national ($, #, @,)
characters, a hyphen, or a character X'C0'. The first character following the
ampersands must be alphabetic or national ($, #, @).

The system generates a qualified name for the in-stream or sysout data set. The
qualified name contains:

e The userid of the job

e The jobname

e The jobid

e A system-assigned identifier

e The data set name from the DSNAME parameter (if DSNAME is coded), or a
question mark (?) if DSNAME is not coded.

The format of the name is:

userid.jobname.jobid.Ddsnumber.name
where name is the dsname or a question mark (?).

When the system checks a user's authority to access a SYSOUT data set, the
check is made against the JESSPOOL class using the fully qualified name,
preceded by the node name and a period:

nodename.userid.jobname.jobid.Ddsnumber.name

Profiles of this format may be defined in your security system to allow other users
access to your SYSOUT data sets. A profile is not necessary for you to access
your own data sets.

Note: A single ampersand before a data set name in a cataloged or in-stream
procedure signifies a symbolic parameter. However, if no value is assigned
to the name on either the EXEC statement that calls the procedure, a
PROC statement in the procedure, or a previous SET statement, the system
treats the name as the last qualifier of the data set name for an in-stream or
sysout data set.

&&dsname
Specifies the last qualifier of the system-generated data set name for an
in-stream or sysout data set.

Data Set Name Copied from Earlier DD Statement

A backward reference is a reference to an earlier statement in the job or in a
cataloged or in-stream procedure called by this or an earlier job step. A backward
reference can be coded in the DSNAME parameter to copy a data set name from
an earlier DD statement.

When copying the data set name, the system also copies the following from the DD
statement:

¢ Whether or not the data set is a PDS or a PDSE.

* Whether or not the data set is a temporary data set.

*.ddname
Asks the system to copy the data set name from earlier DD statement ddname.

Chapter 12. DD Statement 12-101

DD: DSNAME

*.stepname.ddname
Asks the system to copy the data set name from DD statement, ddname, in an
earlier step, stepname, in the same job.

*.stepname.procstepname.ddname
Asks the system to copy the data set name from a DD statement in a
cataloged or in-stream procedure. Stepname is the name of this job step or an
earlier job step that calls the procedure, procstepname is the name of the
procedure step that contains the DD statement, and ddname is the name of the
DD statement.

Data Set Name for Dummy Data Set

NULLFILE
Specifies a dummy data set. NULLFILE has the same effect as coding the DD
DUMMY parameter. NULLFILE must be coded as a single-word parameter. For
instance, IBM does not support the use of NULLFILE to obtain a dummy data
set for these (or other) formats:

e When followed by a member name
* As a qualifier in a qualified data set name
* As a temporary data set name.

Relationship to Other Parameters

Do not code the following parameters with the DSNAME parameter.
DDNAME

DYNAM
QNAME

Do not code the DCB IPLTXID subparameter with the DSNAME parameter.
Reserved Data Set Names

Do not code the following data set names on the DSNAME parameter with the *,
DATA, or SYSOUT parameter (an in-stream or sysout data set); the names are
reserved for system use.

JESJCL JESMSGLG
JESJCLIN JESYSMSG

With DD AMP Parameter

When you code an AMP parameter for a VSAM data set, do not code a DSNAME:

e That contains parentheses, a minus (hyphen), or a plus (+) sign.
e That is in the form for ISAM.

e That is in the form for PAM (partitioned access method).

e That names a generation data group.

With DD DISP Parameter

You can create a permanent data set by specifying a qualified or unqualified data
set name, the disposition must be other than DELETE.

The following example illustrates how to create a permanent data set:

12-102 0S/390 V2R10.0 MVS JCL Reference

DD: DSNAME

//REPORT DD DSN=DEHART.APAR.REPORT,SPACE=(CYL,(5,5)),
/l DISP=(NEW,CATLG) ,UNIT=SYSALLDA,
// DCB=(LRECL=121,RECFM=FBA,BLKSIZE=1210)
You can create a temporary data set by specifying a:
e &&dsname or by omitting the DSNAME parameter
e Qualified or unqualified data set name and specifying, either explicitly or
implicitly, DISP=(NEW,DELETE).
The following two examples illustrate how to create a temporary data set:
//MYDD1 DD DSN=TEMP1,UNIT=3480,DISP=(,DELETE),SPACE=(TRK,(1,1))
//DD2 DD UNIT=SYSALLDA,SPACE=(TRK,1),DISP=(NEW,PASS)

Note: When you code a disposition of CATLG for a data set, do not code a
DSNAME name in apostrophes.

Examples of the DSNAME Parameter

Example 1
//DD1 DD DSNAME=ALPHA,DISP=(,KEEP),
// UNIT=3420,VOLUME=SER=389984

DD statement DD1 defines a new data set and names it ALPHA. DD statements in
later job steps or jobs may retrieve this data set by specifying ALPHA in the
DSNAME parameter, unit information in the UNIT parameter, and volume
information in the VOLUME parameter.

Example 2
//DDSMS1 DD DSNAME=ALPHA.PGM,DISP=(NEW,KEEP) ,DATACLAS=DCLAS1,
// MGMTCLAS=MCLAS1,STORCLAS=SCLAS1

DD statement DDSMS1 defines a new SMS-managed data set and names it
ALPHA.PGM. DD statements in later job steps or jobs may retrieve this data set by
specifying ALPHA.PGM in the DSNAME parameter.

Example 3
//DD2 DD DSNAME=LIB1(PROG12),DISP=(OLD,KEEP),UNIT=3350
/l VOLUME=SER=882234

DD statement DD2 retrieves member PROG12 from the partitioned data set named
LIB1.

Example 4
//DDIN DD DATA,DSNAME=&&PAYIN1

data
/*

DD statement DDIN defines PAYIN1 as the last qualifier of the system-generated
data set name for the in-stream data set. This generates a data set name such as
userid.jobname.jobid.Ddsnumber.PAYINT.

Chapter 12. DD Statement 12-103

DD: DSNTYPE

Example 5
//DDOUT DD DSNAME=8&&PAYOUT1,SYSOUT=P

DD statement DDOUT defines PAYOUT1 as the last qualifier of the
system-generated data set name for the sysout data set. This generates a data set
name such as userid.jobname.jobid.Ddsnumber.PAYOUT1.

Example 6
//DD3 DD DSNAME=&&WORK,UNIT=3420

DD statement DD3 defines a temporary data set. Because the data set is deleted
at the end of the job step, the DSNAME parameter can be omitted. The following
example shows why a temporary data set should be named.

Example 7

//STEP1 EXEC PGM=CREATE

//DD4 DD DSNAME=&&ISDATA(PRIME),DISP=(,PASS),UNIT=(3350,2),
/l VOLUME=SER=334859,SPACE=(CYL, (10,,2),,CONTIG) ,DCB=DSORG=IS
//STEP2 EXEC PGM=0PER

//DD5 DD DSNAME=+.STEP1.DD4,DISP=(0OLD,DELETE)

DD statement DD4 in STEP1 defines a temporary indexed sequential data set
named ISDATA. This DD statement defines all of the areas of an indexed
sequential data set. DD statement DD5 in STEP2 retrieves the data set by referring
to the earlier DD statement that defines the data set. Because the temporary data
set is passed when it is defined in STEP1, it is not deleted at the end of STEP1
and STEP2 can retrieve it.

DSNTYPE Parameter

Parameter Type
Keyword, optional — use this parameter only with DFSMS/MVS
Purpose

Use the DSNTYPE parameter to specify:
¢ A new partitioned data set (PDS)
* A new partitioned data set extended (PDSE), which is also called a library
¢ A new hierarchical file system (HFS) data set
A first-in first-out (FIFO) special file, which is also called a named pipe

Also use the DSNTYPE parameter to override the DSNTYPE attribute defined in
the data class of the partitioned data set or PDSE.

Serialization of the data set can exist at both the data set (library) level and the
member level. If you specify DISP=SHR on the DD statement for a PDSE, sharing
of the data set applies to the data set and the individual member specified. Multiple
jobs can access different members of the data set and create new members of the
data set concurrently. However, concurrent update access to a specific member (or
update and read by other jobs) is not allowed. Dispositions of DISP=OLD, NEW, or

12-104 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: DSNTYPE

MOD result in exclusive use of the entire data set. A PDSE can be created through
the BPAM, BSAM, and QSAM access methods.

If DFSMS is not installed or is not active, the system checks the syntax and then
ignores the DSNTYPE parameter.

Before you define a PDSE, check with your storage administrator to ensure that
SMS is able to manage the data set and assign the PDSE to a storage class.
Information that you need to define a PDSE appears in |0S/390 DFSMS: Using|
:

An HFS data set is a data set used by OS/390 UNIX System Services (O0S/390
UNIX) programs. It contains a mountable file system. It is a partitioned format data
set, similar to a PDSE.

A FIFO special file is a type of file with the property that data written to such a file
is read on a first-in-first-out basis. A FIFO special file defined in a DD statement
provides a connection filled with data among programs. One or more programs can
write data into the file; one or more programs can read the data.

References

For information on partitioned data sets and PDSEs, see [0S/390 DFSMS: Usingd]
[Data Setd For information on HFS data sets and FIFO special files, see
UNIX System Services Plannind and the [0S/390 UNIX System Services User's
Guide

DSNTYPE= {LIBRARY}
{HFS }
{PDS }
{PIPE '}

Subparameter Definition

LIBRARY
Specifies a DFSMS-managed partitioned data set extended (PDSE). A PDSE
can contain data and problem object members.

HFS
Specifies an HFS data set. Specify HFS only when the DD statement also
specifies a DSNAME parameter.

PDS
Specifies a partitioned data set (PDS). A PDS can contain data and load
module members.

PIPE
Specifies a FIFO special file. Specify PIPE only when the DD statement also
specifies a PATH parameter.

Chapter 12. DD Statement 12-105

DD: DSNTYPE

Defaults

Overrides

If you do not specify DSNTYPE, the type of data set is determined by other data
set attributes, the data class for the data set, or an installation default.

DSNTYPE cannot default to HFS or PIPE. You must explicitly specify these
attributes.

DSNTYPE overrides the DSNTYPE attribute in the DATACLAS parameter for the
data set. See['Overrides” on page 12-50

Relationship to Other Parameters

Do not code the following DD parameters with the DSNTYPE parameter.

* DDNAME

AMP DYNAM

DATA QNAME
RECORG

Examples of the DSNTYPE Parameter

Example 1
//NEWPDSE DD DSNAME=FILEA.ABC(REC1),DISP=(NEW,KEEP)

In the example, the NEWPDSE DD statement defines member REC1 in the new
PDSE named FILEA.ABC. Note that installation-written ACS routines select the
data class (which specifies LIBRARY for DSNTYPE), management class, and
storage class for the data set.

Example 2
//NEWA DD DSNAME=REPORT.ONE(WEEK1),DISP=(NEW,KEEP),
// DATACLAS=DCLAS09,DSNTYPE=LIBRARY

In the example, the NEWA DD statement defines member WEEK1 in the new
PDSE named REPORT.ONE. DSNTYPE=LIBRARY overrides the DSNTYPE
attribute in data class DCLASO09 but uses other data set attributes in DCLASO09.
Note that installation-written ACS routines select the management class and
storage class for the data set.

Example 3
//NEWB DD DSNAME=REPORT.TWO(WEEK2) ,DISP=SHR,
// DATACLAS=DCLAS09,DSNTYPE=LIBRARY

In the example, the NEWB DD statement adds a new member named WEEK?2 to
the existing PDSE named REPORT.ONE. DSNTYPE=LIBRARY overrides the
DSNTYPE attribute in data class DCLASO09 but uses other data set attributes in
DCLASO09. Other jobs can be concurrently processing existing members of PDSE
named REPORT. Note that installation-written ACS routines select the
management class and storage class for the data set.

Example 4

//FILESYS DD DSNAME=0PENDS.USRJOE,DATACLAS=DCLASO5,DISP=(NEW,KEEP),
// DSNTYPE=HFS,SPACE=(CYL, (100,100,1))

12-106 0S/390 V2R10.0 MVS JCL Reference

DD: DUMMY

The FILESYS DD statement creates an HFS data set to contain an HFS file
system. The DCLASO5 in DATACLAS specifies allocation characteristics. The
number of directory blocks must be specified to indicate that this is an HFS data
set but the value has no effect on allocation.

Example 5

//PIPE DD PATH='/u/payrol1/buffer',DSNTYPE=PIPE,
// PATHOPTS=(OWRONLY,0EXCL,0CREAT) ,PATHMODE=(SIWUSR,SIRGRP),
/l PATHDISP=(KEEP,DELETE)

The PIPE DD statement creates a file named /u/payroll/buffer for use as a FIFO
special file. The PATHOPTS parameter specifies that the user intends that the
program open the FIFO special file for writing. The PATHMODE parameter
specifies that the file owner can write in the FIFO special file and that users in the
file group class can read from the FIFO special file. The PATHDISP parameter
requests that the file be kept when the program ends normally and deleted when it
ends abnormally.

Pathnames are case-sensitive. If you are specifying a pathname containing a
special character, including a lowercase character, enclose it in apostrophes. For
more information, refer to|“PATH Parameter” on page 12-148|

DUMMY Parameter

Parameter Type
Positional, optional
Purpose

Use the DUMMY parameter to specify that:
* No device or external storage space is to be allocated to the data set.
» No disposition processing is to be performed on the data set.

e For BSAM and QSAM, no input or output operations are to be performed on
the data set.

One use of the DUMMY parameter is in testing a program. When testing is finished
and you want input or output operations performed on the data set, replace the DD
DUMMY statement with a DD statement that fully defines the data set.

Another use of the DUMMY parameter is in a cataloged or in-stream procedure.
Code on the DD DUMMY statement all the required parameters. When the
procedure is called, nullify the effects of the DUMMY parameter by coding on the
DD statement that overrides the DD DUMMY statement a DSNAME parameter that
matches the DSNAME parameter on the DD DUMMY statement. For example,
procedure step PS contains the following:

//DS1 DD DUMMY ,DSNAME=A,DISP=0LD
Nullify the DUMMY parameter by coding:

/13S EXEC PROC=PROC1
//PS.DS1 DD DSNAME=A

Chapter 12. DD Statement 12-107

DD: DUMMY

Syntax

//ddname DD DUMMY[,parameter]...

All parameters coded on a DD DUMMY statement must be syntactically correct. The system

checks their syntax.

Parameters on DD DUMMY Statements

e Code the DUMMY parameter by itself or follow it with all the parameters you
would normally code when defining a data set, except the DDNAME parameter.

e Code the DCB parameter, if needed. If the program does not supply all the
data control block information, make sure that the DCB parameter supplies the
missing information.

e Code AMP=AMORG if you are using VSAM's ISAM interface.

 If you code either VOLUME=REF=dsname or DCB=dsname with DUMMY, the
referenced dsname must be cataloged or passed; otherwise, the job is
terminated.

e Because no I/O is performed to the dummy data set, the system checks the
SPACE and DISP parameters, if coded, for syntax, then ignores them. If you
code UNIT with DUMMY, the system will ignore it if the specified unit name is
syntactically correct and defined to the system. Otherwise the system
terminates the job.

Relationship to Other Parameters

Do not code the following parameters with the DUMMY parameter.

* DYNAM
DATA QNAME
DDNAME

Relationship to Other Control Statements

Backward References

If a later DD statement in a job refers to a DD DUMMY statement when requesting
unit affinity (UNIT=AFF=ddname) or volume affinity
(VOLUME=REF=".stepname.ddname), the system assigns a dummy status to the
later DD statement.

Overriding a Procedure DD Statement

Coding DUMMY on a DD statement that overrides a DD statement in a procedure
does not nullify symbolic parameters on the overridden DD statement. You must
assign values to, or nullify, symbolic parameters on the overridden DD statement as
described in [‘Using System Symbols and JCL Symbols” on page 5-13

If the overriding DD statement contains a DSNAME parameter other than
NULLFILE, a PATH parameter other than /dev/null, or a SUBSYS, SYSOUT, *, or
DATA parameter, the system nullifies a DUMMY parameter on the overridden DD
statement.

Note: If you code SYSOUT= on an overriding statement, without specifying a
subparameter value, the system does not nullify the DUMMY parameter.

12-108 0S/390 V2R10.0 MVS JCL Reference

DD: DUMMY

You must code a subparameter value for SYSOUT to nullify the DUMMY
parameter.

Data Sets Concatenated to Dummy Data Sets

The system treats data sets concatenated to a DUMMY data set as dummy data
sets in that 1/O operations are bypassed. However, the system performs disposition
processing and allocates devices and storage for any concatenated data sets.

Relationship to Access Methods
Use one of the following access methods with the DUMMY parameter:

e Basic sequential access method (BSAM)

e Virtual storage access method (VSAM)

¢ Queued sequential access method (QSAM)

BDAM load mode (BSAM with MACRF=WL in the data control block)

If you use any other access method, the job is terminated.

Note: The ISAM/VSAM interface does not support the DUMMY parameter. For
more information on the ISAM/VSAM interface, see |0S/390 DFSMS: Using|
Data Sets,

Examples of the DUMMY Parameter
Example 1
//0UTDD1 DD DUMMY,DSNAME=X.X.Z,UNIT=3380,
/l SPACE=(TRK, (10,2)) ,DISP=(,CATLG)

DD statement OUTDD1 defines a dummy data set. The other parameters coded on
the statement are checked for syntax but not used.

Example 2
//IN1 DD DUMMY,DCB=(BLKSIZE=800,LRECL=400,RECFM=FB)

DD statement IN1 defines a dummy data set. The DCB parameter supplies data
control block information not supplied in the program. Without it, the step might be
abnormally terminated.

Example 3
//IN2 DD DUMMY,DSNAME=ELLN,DISP=0LD,VOLUME=SER=11257 ,UNIT=3350

When calling a cataloged procedure that contains DD statement IN2 in procedure
step STEP4, you can nullify the effects of the DUMMY parameter by coding:

//STEP4.IN2 DD DSNAME=ELLN

Example 4
//TAB DD DSNAME=APP.LEV12,DISP=0LD

If you call a cataloged procedure that contains DD statement TAB in procedure
step STEP1, you can make this DD statement define a dummy data set by coding:

//STEP1.TAB DD DUMMY

Example 5

Chapter 12. DD Statement 12-109

DD: DYNAM

//MSGS DD SYSOUT=A

If you call a cataloged procedure that contains the DD statement MSGS in
procedure step LOCK, you can make this DD statement define a dummy data set
by coding:

//LOCK.MSGS DD DUMMY

DYNAM Parameter

Syntax

Parameter Type
Positional, optional
Purpose

Use the DYNAM parameter to increase by one the control value for dynamically
allocated resources held for reuse. Even when DYNAM is not coded, the system
normally holds resources in anticipation of reuse. The DYNAM parameter is
supported to provide compatibility with older systems.

A DD DYNAM statement is a dummy request.

//ddname DD DYNAM [comments]

Relationship to Other Parameters

Do not code any parameters with the DYNAM parameter.

Do not code on a DD DYNAM statement a ddname that is meaningful to the
system; for example, JOBLIB, SYSCHK.

Relationship to Other Control Statements

e Do not refer to a DD DYNAM statement in a DDNAME parameter.

e To nullify the DYNAM parameter on a DD statement in a cataloged or in-stream
procedure, code a SYSOUT or DSNAME parameter in the overriding DD
statement. DSNAME=NULLFILE does not nullify a DYNAM parameter.

¢ Do not code a backward reference to a DD DYNAM statement.

e Do not code the DYNAM parameter on the first DD statement for a
concatenation.

Example of the DYNAM Parameter

//INPUT DD DYNAM

This DD statement increases by one the control value for dynamically allocated
resources held for reuse.

12-110 0S/390 V2R10.0 MVS JCL Reference

DD: EXPDT

EXPDT Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the EXPDT parameter to specify the expiration date for a new data set. On
and after the expiration date, the data set can be deleted or written over by another
data set.

Note: You cannot use the EXPDT parameter to change the expiration date of an
existing SMS data set.

Note: You may specify a past date; this would not be an error condition.
If the DD statement contains DISP=(NEW,DELETE) or the DISP parameter is
omitted and defaults to NEW and DELETE, the system deletes the data set when

the step terminates, either normally or abnormally, even if you have specified an
expiration date.

Do not specify EXPDT for a temporary data set.
The EXPDT parameter achieves the same result as the RETPD parameter.

Code the EXPDT parameter when you want to specify an expiration date for the
data set, or, with SMS, override the expiration date defined in the data class for the
data set.

EXPDT= {yyddd }
{yyyy/ddd}

The EXPDT parameter can have a null value only when coded on a DD statement that is either
added to a procedure or overrides a DD statement in a procedure.

Subparameter Definition

EXPDT=yyddd
EXPDT=yyyy/ddd
Specifies an expiration date for the data set.

yyddd
The yy is a two-digit year number (through 99) and the ddd is a three-digit
day number from 000 through 365 for non-leap year dates. For example,
code February 2, 1995 as EXPDT=95033. For leap year date the ddd is a
three digit day number from 000 through 366. For example, code
December 31, 1996 as EXPDT=96366.

Note: For expiration dates of January 1, 2000 and later, you MUST use
the form EXPDT=yyyy/ddd.

Note: Expiration dates of 99365 and 99366 are considered “never-scratch”
dates. Data sets with these expiration dates are not deleted or
written over.

Chapter 12. DD Statement 12-111

DD: EXPDT

Overrides

yyyy/ddd
The yyyy is a four-digit year number (through 2155) and the ddd is a

three-digit day number from 000 through 365 for non-leap year dates. For
example, code February 2, 1995 as EXPDT=1995/033. For leap year date
the ddd is a three digit day number from 000 through 366. For example,
code December 31, 2000 EXPDT=2000/366.

Note: Expiration dates of 1999/365 and 1999/366 are considered
“never-scratch” dates. Data sets with these expiration dates are not
deleted or written over.

You may specify the years from 1900. However, if you specify the current date
or an earlier date, the data set is immediately eligible for replacement.

With SMS, EXPDT overrides the expiration date defined in the DATACLAS
parameter for the data set. See [‘Overrides” on page 12-50L

With SMS, both the expiration date specified on EXPDT and defined in the data
class for an SMS-managed data set can be limited by a maximum expiration date
defined in the management class for the data set.

Relationship to Other Parameters

Do not code the following DD parameters with the EXPDT parameter.

* DYNAM
DATA RETPD
DDNAME SYSOUT

Deleting a Data Set Before its Expiration Date

To delete a data set before the expiration date has passed, use one of the
following:

e For data sets cataloged in an integrated catalog facility catalog, use the
DELETE command, as described in [0S/390 DFSMS Access Method Serviced

for Catalogd.

e For data sets not cataloged in an integrated catalog facility catalog, use the
IEHPROGM utility, as described in[0S/390 DFSMSdfp Utilities,

* To make the space occupied by the data set available for reallocation, use the
SCRATCH macro with the OVRD parameter, as described in |[0S/390
|[DFSMSdfp Advanced Services,

e You can override the expiration date for SMS-managed DASD data sets by
specifying OVRD_EXPDT(YES) in the IGDSMSxx SYS1.PARMLIB member and
specifying DELETE on the DD DISP statement. The data set will be deleted
whether or not it has expired. See [0S/390 MVS Initialization and Tuning
[Referencd for information about the IGDSMSxx parmlib member.

12-112 0S/390 V2R10.0 MVS JCL Reference

DD: FCB

Examples of the EXPDT Parameter

Example 1
//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),EXPDT=2006/033,
// UNIT=SYSDA,SPACE=(TRK, (1,1)),VOLUME=SER=663344

In this example, the data set is not eligible for being deleted or written over until
February 2, 2006.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// EXPDT=2001/033

In this example, the expiration date of February 2, 2001 overrides the expiration
date defined in the data class for the data set.

FCB Parameter
Parameter Type

Keyword, optional
Purpose

Use the FCB parameter to specify:

e The forms control buffer (FCB) image JES is to use to guide printing of this
sysout data set by a 1403 Printer, 3211 Printer, 3203 Printer Model 5, 3800
Printing Subsystem, 4245 Printer, 4248 Printer, or by a printer supported by
systems network architecture (SNA) remote job entry (RJE).

e The carriage control tape JES is to use to control printing of this sysout data
set by a 1403 Printer or by a printer supported by SNA RJE.

» The data-protection image JES is to use to control output of this sysout data
set by a 3525 Card Punch.

The FCB image specifies how many lines are to be printed per inch and the length
of the form. JES loads the image into the printer’s forms control buffer. The FCB
image is stored in SYS1.IMAGELIB. IBM provides three standard FCB images:

e STD1, which specifies 6 lines per inch on an 8.5-inch-long form. (3211 and
3203-2 only)

e STD2, which specifies 6 lines per inch on an 11-inch-long form. (3211 and
3203-2 only)

e STD83, which specifies 8 lines per inch for a dump on an 11-inch form. (3800
only)

References

For more information on the forms control buffer, see [0S/390 DFSMSdfp Advanced|
Serviceg or 3800 Programmer's Guide.

Chapter 12. DD Statement 12-113

DD: FCB

Syntax

FCB= {fch-name }
{(fcb-name[,ALIGN|,VERIFY])}

¢ You can omit the parentheses if you code only the fcb-name.

¢ Code the fcb-name as STD1 or STD2 only to request the IBM-supplied images.
¢ Code the fcb-name as STDS3 for a high-density dump.

¢ Null positions in the FCB parameter are invalid.

Subparameter Definition
fcb-name
Identifies the FCB image. The name is 1 through 4 alphanumeric or national ($,
#, @) characters and is the last characters of a SYS1.IMAGELIB member
name:

e FCB2xxxx member for a 3211, a 3203 model 5, or a printer supported by
SNA.

¢ FCB3xxxx member for a 3800.
¢ FCB4xxxx member for a 4248.

ALIGN
Requests that the system ask the operator to check the alignment of the printer
forms before the data set is printed.

Note:
e ALIGN is ignored for a sysout data set.
e ALIGN is ignored for a data set printed on a 3800. The 3800 does
not use the ALIGN subparameter.
VERIFY

Requests that the system ask the operator to verify that the image displayed on
the printer is for the desired FCB image. The operator can also take this
opportunity to align the printer forms.

Note: VERIFY is ignored for a sysout data set.

Defaults
If you do not code the FCB parameter, the system checks the FCB image in the
printer’'s forms control buffer; if it is a default image, as indicated by its first byte,
JES uses it. If it is not a default image, JES loads the FCB image that is the
installation default specified at JES initialization.

Overrides

An FCB parameter on a sysout DD statement overrides an OUTPUT JCL FCB
parameter.

12-114 0S/390 V2R10.0 MVS JCL Reference

DD: FCB

Relationship to Other Parameters
Do not code the following parameters with the FCB parameter.

* DYNAM
AMP KEYOFF
DATA PROTECT
DDNAME QNAME

Do not code the following DCB subparameters with the FCB parameter.

CYLOFL INTVL
RKP

For output to the 3525, do not code the SYSOUT parameter and the FCB
parameter; the system ignores the FCB parameter.

Relationship to Other Control Statements
You can also code the FCB parameter on the following:
e The OUTPUT JCL statement.

e The JES2 /*OUTPUT statement.
e The JES3 //*FORMAT PR statement.

Defining an FCB Image for a Work Station

When a work station uses a peripheral data set information record (PDIR), the FCB
image is defined in the work station. The DD statement FCB fcb-name
subparameter must match the FCB name defined in the PDIR work station.

When a work station does not use a PDIR, add an FCB member to
SYS1.IMAGELIB. At setup time, JES3 translates the FCB into a set vertical format
(SVF).

Requesting a High-Density Dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:

¢ FCB=STDS3. This parameter produces dump output at 8 lines per inch.
e CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Examples of the FCB Parameter
Example 1

//DD1 DD UNIT=3211,FCB=(IMG1,VERIFY)

In this example, the DD statement defines an output data set to be printed by a
3211. The FCB parameter requests that the data set be printed under control of the
FCB2IMG1 member in SYS1.IMAGELIB. Because VERIFY is coded, the system
displays the FCB image on the printer before printing the data set.

Example 2
//DD2 DD SYSOUT=A,FCB=IMG2

Chapter 12. DD Statement 12-115

DD: FILEDATA

This sysout DD statement specifies output class A. If output class A routes output
to a printer having the forms control buffer feature, JES loads the FCB image IMG2
into the forms control buffer. If the printer does not have the forms control buffer
feature, the operator receives a message to mount the carriage control tape IMG2
on the printer.

Example 3
//0UTDDS DD UNIT=3211,FCB=(6,ALIGN)

In this example, the DD statement defines an output data set to be printed by a
3211. The FCB parameter requests that the data set be printed under control of the
FCB image named 6. Because ALIGN is coded, the system issues a message to
the operator requesting that the alignment of the printer forms be checked before
the data set is printed.

Example 4
//PUNCH DD UNIT=3525,FCB=DP2

In this example, the DD statement requests output on a 3525. Therefore, the FCB
parameter defines the data protection image to be used for the 3525.

Example 5
//SYSUDUMP DD SYSOUT=A,FCB=STD3

In this example, the DD statement requests that the 3800 print a dump at 8 lines
per inch.

FILEDATA Parameter

Parameter Type
Keyword, optional
Purpose

Use the FILEDATA keyword to describe the organization of a hierarchical file so
that the system can determine how to process the file.

Use the FILEDATA keyword only on a system that includes DFSMS/MVS
Version 1.3 or later.

If a job containing the FILEDATA parameter runs on a system without the required
DFSMS/MVS support, the system checks the FILEDATA syntax and then ignores
the parameter.

References

For more information on network file protocols, see|0S/390 Network File System
|Customization and Operation|and [0S/390 Network File System User's Guidg.

12-116 0S/390 V2R10.0 MVS JCL Reference

DD: FLASH

Syntax

FILEDATA= {BINARY}
{TEXT }

Subparameter Definition

BINARY
The file described by the DD statement is a byte-stream file and does not
contain record delimiters. The access method does not insert or delete record
delimiters.

TEXT
The file described by the DD statement contains records delimited by the
EBCDIC newline character (x'15').

Defaults

If you do not code the FILEDATA parameter, the system assigns a default value of
BINARY.

Overrides

The FILEDATA parameter does not override the specification of any other JCL
keyword or system parameter.

Relationship to Other Parameters

You can code the FILEDATA parameter only on a DD statement that contains a
PATH parameter.

You can code the following parameters with the FILEDATA parameter.

BLKSIZE LRECL PATHMODE
BUFNO NCP PATHOPTS
DSNTYPE PATH RECFM
DUMMY PATHDISP TERM

Example of the FILEDATA Parameter

//DD1 DD PATH='/u/d89pekl/new',FILEDATA=TEXT,
// PATHMODE= (SIRWXU,SISUID) ,PATHOPTS=(ORDONLY,0CREAT)

In this example, the DD statement identifies a hierarchical file and informs the
system that this file contains records delimited by the newline character.

FLASH Parameter

Parameter Type

Keyword, optional

Purpose

Use the FLASH parameter to identify the forms overlay to be used in printing this

sysout data set on a 3800 Printing Subsystem and, optionally, to specify the
number of copies on which the forms overlay is to be printed.

Chapter 12. DD Statement 12-117

DD: FLASH

Syntax

Note: FLASH applies only for a data set printed on a 3800.
References

For information on forms overlays, see the Forms Design Reference Guide for the
3800.

{overlay-name }
FLASH= {(overlay-name[,count])}
{NONE }

The count subparameter is optional. If you omit it, you can omit the parentheses. However, if you

omit it, you must not code it as a null; for example, FLASH=(ABCD,) is invalid.

Subparameter Definition

Defaults

Overrides

overlay-name
Identifies the forms overlay frame that the operator is to insert into the printer
before printing begins. The name is 1 through 4 alphanumeric or national ($, #,
@) characters.

count
Specifies the number, 0 through 255, of copies that JES is to flash with the
overlay, beginning with the first copy printed. Code a count of 0 to flash all
copies.

NONE
Suppresses flashing for this sysout data set.

If FLASH=NONE is on a DD statement in a job to be executed at a remote
node, JES3 sets the overlay-name to zero before sending the job to the node.

If you do not code a FLASH parameter and an installation default was not specified
at JES2 or JESS initialization, forms are not flashed.

If you specify an overlay-name without specifying a count or with a count of 0, all
copies are flashed. That is, the default for count is 255.

A FLASH parameter on a sysout DD statement overrides an OUTPUT JCL FLASH
parameter.

Note: A null first subparameter is invalid in a FLASH parameter on a DD
statement, but is permitted on an OUTPUT JCL statement.

Relationship to Other Parameters

Do not code the following parameters with the FLASH parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM SUBSYS
DDNAME LABEL VOLUME

Relationship to COPIES Parameter

12-118 0S/390 V2R10.0 MVS JCL Reference

DD: FREE

If this DD statement or a referenced OUTPUT JCL statement also contains a
COPIES parameter, JES prints with the forms overlay the number of copies
specified in one of the following:

e COPIES=nnn, if the FLASH count is larger than nnn. For example, if
COPIES=10 and FLASH=(LTHD,12) JES prints 10 copies, all with the forms
overlay.

e The sum of the group-values specified in the COPIES parameter, if the FLASH
count is larger than the sum. For example, if COPIES=(,(2,3,4)) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

e The count subparameter in the FLASH parameter, if the FLASH count is
smaller than nnn or the sum from the COPIES parameter. For example, if
COPIES=10 and FLASH=(LTHD,7) JES prints seven copies with the forms
overlay and three copies without.

Relationship to Other Control Statements
FLASH can also be coded on the following:

e The OUTPUT JCL statement.
e The JES3 //*FORMAT PR statement.
e The JES2 /*OUTPUT statement.

Verification of Forms Overlay Frame

Before printing starts, the system requests the operator to load the specified forms
overlay frame in the printer. A frame must be loaded, but the system cannot verify
that it is the correct frame.

Printing without Flashing

To print without flashing, specify one of the following:
e FLASH=NONE on the DD or OUTPUT JCL statement.

e Omit the FLASH parameter on all of the statements for the data set and on all
JES initialization statements.

e For a sysout data set, omit the FLASH parameter on the DD statement and
specify FLASH=(,0) on a referenced OUTPUT JCL statement.

Example of the FLASH Parameter
//DD1 DD SYSOUT=A,COPIES=10,FLASH=(ABCD,5)

In this example, JES issues a message to the operator requesting that the
forms-overlay frame named ABCD be inserted into the printer. Then JES prints the
first five copies of the data set with the forms-overlay and the last five copies
without.

FREE Parameter

Parameter Type
Keyword, optional

Purpose

Chapter 12. DD Statement 12-119

DD: FREE

Use the FREE parameter to specify when the system is to unallocate the resources
used for this DD statement’s data set. The resources can be devices, volumes, or
exclusive use of a data set.

Note: Specifying FREE will not release the enqueue on the data set until the last
step that requires the data set completes processing.

Syntax

FREE= {END }
{CLOSE}

Subparameter Definition

END
Requests that the system unallocate the data set at the end of the last step
that references the data set.

CLOSE
Requests that the system unallocate the data set when it is closed.

Defaults

If no FREE parameter is specified, the default is END. Also, if the FREE parameter
is incorrectly coded, the system substitutes END and issues a warning message.

Overrides
FREE=CLOSE is ignored when:

* The data set is a member of a concatenated group.
* The task using the data set abnormally terminates.

e The data set is referenced by another DD statement in the same or subsequent
step.

Relationship to Other Parameters
Do not code the following parameters with the FREE parameter.

* DYNAM
DATA QNAME
DDNAME

If the DD statement specifies FREE=END and a DISP subparameter of PASS, the
data set is not unallocated until the end of the job or until used for a later DD
statement with a disposition of other than PASS.

Do not specify FREE=CLOSE on a DD statement with a ddname of JOBCAT,
JOBLIB, STEPCAT, or STEPLIB; CLOSE is ignored.

When you specify FREE=CLOSE:

 If the job step abnormally terminates before the data set is closed, the system
uses the abnormal termination disposition from the DISP parameter to process
the data set. If a recovery routine, such as an ESTAE routine, gets control and
closes the data set, however, it uses the normal termination disposition.

12-120 0S/390 V2R10.0 MVS JCL Reference

DD: FREE

* If the job step abnormally terminates after the data set is closed, then the
system has already processed the data set using the normal termination
disposition.

If you specify SPIN=NO with FREE=CLOSE, the sysout data set will be
unallocated, but not printed until the end of the job.

When you specify SPIN=UNALLOC with FREE=CLOSE, the sysout data set is
available for printing immediately when you explicitly close or dynamically
unallocate the data set. If you do not explicitly close or dynamically unallocate the
data set, it will be available for printing at the end of the step.

If you specify SPIN=UNALLOC with FREE=END, the sysout data set is unallocated
at the end of the step, and is made available for printing then. If you dynamically
unallocate the sysout data set, the system makes it available for printing
immediately.

If you specify SPIN=NO with FREE=END, the system makes the sysout data set
available for printing at the end of the job, regardless of when the data set is
unallocated or closed.

Relationship to Other Control Statements
If a DD statement requests unit affinity in a UNIT=AFF parameter or volume affinity
in a VOLUME=REF parameter with an earlier DD statement, do not code
FREE=CLOSE on the earlier statement.

If you code FREE=CLOSE on a sysout DD statement that references an OUTPUT
JCL statement containing a GROUPID parameter, JES2 will not group the data sets
into one output group. Instead, JES2 produces one copy of the sysout data set for
each OUTPUT JCL statement that the DD statement references.

Relationship to the CLOSE Macro Instruction
When FREE=CLOSE is specified for a data set that is opened and closed more
than once during a job step:

e The data set is unallocated after it is closed if the assembler CLOSE macro
instruction specifies DISP, REWIND, or FREE. If the data set is reopened after
the system has unallocated it, the job step abnormally terminates, unless the
data set is dynamically allocated in the interval.

The data set is not unallocated until the end of the job if the assembler CLOSE
macro instruction specifies LEAVE or REREAD. Then the data set can be
reopened.

Examples of the FREE Parameter
Example 1

//EA33 DD SYSOUT=D,FREE=CLOSE

In this example, the FREE=CLOSE parameter makes JES unallocate this output
class D data set when it is closed, rather than at the end of the job step. JES
schedules the data set for printing.

Example 2

Chapter 12. DD Statement 12-121

DD: HOLD

//EA33 DD DSNAME=SYBIL,DISP=0LD,FREE=CLOSE

In this example, the FREE=CLOSE parameter makes JES unallocate the data set,
dequeue it, and make it available to other jobs as soon as it is closed.

Example 3

//STEP1 EXEC PGM=ABLEl

//DD1 DD DSNAME=A,DISP=(,PASS),FREE=END
//STEP2 EXEC PGM=ABLE2

//DD2 DD DSNAME=A,DISP=(OLD,CATLG),FREE=END

In this example, data set A is passed by STEP1 to STEP2. FREE=END on DD
statement DD1 is ignored because the disposition is PASS. FREE=END on DD
statement DD2 causes data set A to be unallocated at the end of STEP2, when it i
also cataloged.

Example 4
//STEP1 EXEC PGM=BAKER1
//DD DD DSNAME=A,DISP=(NEW,PASS),FREE=END

//STEP2 ~ EXEC PGM=BAKER2

In this example, data set A is a new data set. Because PASS is specified,
FREE=END is ignored and the data set remains allocated.

HOLD Parameter

Parameter Type
Keyword, optional
Purpose

Use the HOLD parameter to tell the system to hold a sysout data set until it is
released by the system operator. When the data set is ready for processing, notify
the system operator to release it via a TSO/E NOTIFY parameter, a JES2
/*MESSAGE statement, or a JES3 //*OPERATOR statement.

A TSO/E user can specify HOLD=YES to retrieve a sysout data set and display it
on a terminal. For JES3, the TSO/E user can process only work on the hold queue.
Notes:

1. HOLD is supported only for sysout data sets. If HOLD appears on a DD
statement that does not contain a SYSOUT parameter, it is ignored.

2. HOLD allows the sysout data set to be the internal reader. If the sysout data
set is the internal reader, the job being submitted will be held.

Syntax

HOLD=

12-122 0S/390 V2R10.0 MVS JCL Reference

DD: HOLD

Subparameter Definition

YES

Requests that the system hold the sysout data set until the data set is released
by the system operator. You can also code this subparameter as Y.

NJE Notes:

NO

e In a JES2 NJE environment, the system does not hold the data set until it

reaches its ultimate destination node.

* If the destination node is a JES3 node, the system may still not hold the

data set if the class of output being transmitted is not defined as a hold
class.

If the sending node is JESS, the system holds the output data set at that
node on the BDT queue (when transmitting to an SNA-attached node) or
the WTR queue (when transmitting to a BSC-attached node) if all of the
following are true:

— The "// DD SYSOUT=" JCL statement does not contain a
DEST=(node,userid) parameter.

— The SYSOUT= parameter does not contain the WRITER-NAME
subparameter and the output class is not defined as a hold class.

— No WRITER= parameter is coded on the OUTPUT JCL statement.
Example 1.

The following job executes on NODE1 and results in the SYSUT2 output
data set being held on the BDT queue on NODE1. (NODES5 is attached to
NODE1 via SNA and output class A is not defined as a hold class.)

/151 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT1 DD DSN=SYS1.PROCLIB(JES3),DISP=SHR
//SYSUT2 DD SYSOUT=A,HOLD=YES,DEST=NODES

Example 2.

The following job executes on NODE1 and results in the SYSUT2 output
data set being held on the WTR queue on NODE1. (NODES is attached to
NODE1 via BSC and output class A is not defined as a hold class.)

/781 EXEC PGM=IEBGENER

/101 OUTPUT CLASS=A,DEST=NODEZ.MYWRITR
//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT1 DD DSN=SYS1.PROCLIB(JES3),DISP=SHR
//SYSUT2 DD SYSOUT=(,),HOLD=YES,OUTPUT=(*.01)

Requests that the system perform installation-defined processing for the sysout
data set’s output class. You can also code this subparameter as N.

Chapter 12. DD Statement 12-123

DD: HOLD

Defaults

Overrides

If no HOLD parameter is specified, the default is NO. If the HOLD parameter is
incorrectly coded, the system assumes the default of NO and issues a warning
message; the job continues.

HOLD=NO is overridden by the unallocation verb of dynamic allocation or the
TSO/E FREE command.

Either HOLD=YES or HOLD=NO on the DD statement overrides the sysout data
set disposition specified on the OUTDISP parameter of the OUTPUT JCL
statement.

Relationship to Other Parameters

Code the HOLD parameter only on a DD statement with the SYSOUT parameter.

JES3 ignores HOLD=YES when

¢ DEST=(node,userid) is coded on the SYSOUT= DD statement. Example (1)
shows this case. (JES3 does not ignore the HOLD=YES when DEST= is
coded on the OUTPUT DD statement. Example (2) shows this case.) or

e the sysout data set is placed on the hold queue, for example, if
SYSOUT=(,writer-name) is coded.

Relationship to Other Control Statements

Code a NOTIFY parameter on the JOB statement to ask the system to send a
message to your TSO/E userid when job processing is complete.

JES2 users can use the /*NOTIFY control statement to direct job notification
messages and to override a JOB NOTIFY parameter.

Examples of the HOLD Parameter

Example 1

//J0BO1 JOB ,'HAROLD DUQUETTE',MSGLEVEL=1
//STEP1 ~ EXEC PGM=MJCOSCO

//pD1 DD SYSOUT=B,DEST=RMT6,HOLD=YES

Sysout data set DD1 from JOBO1 is held on a queue until the TSO/E user at RMT6
asks the system operator to release the data set.

Example 2

//$J0Bxx JOB ,'OSWALD CHALMERS',MSGLEVEL=1
//0UT1 OUTPUT DEST=NODE2.printer,CLASS=A,...
//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=~+

//SYSUT1 DD DISP=SHR,DSN=A.DATA.SET

//SYSUT2 DD SYSOUT=(,) ,0UTPUT=(*.0UT1) ,HOLD=YES

In Example (2), if the job is submitted on NODE1, JES3 does not ignore the
HOLD=YES. The SYSOUT data set is held at NODE1 and is not transmitted to
NODE2 to be held there.

12-124 0S/390 V2R10.0 MVS JCL Reference

DD: KEYLEN

KEYLEN Parameter

Parameter Type
Keyword, optional
Purpose

Use the KEYLEN parameter to specify the length of the keys used in a new data
set.
Code the KEYLEN parameter when you want to:

e Specify a key length for the data set or

e With SMS, override the key length defined in the data class of the data set.
The key length can be supplied from the data set label (or data class with SMS). If

a key length is not specified or supplied, input or output requests must not require
keys.

KEYLEN applies to data sets with the BDAM, BPAM, BSAM, EXCP, QISAM, and
TCAM access methods, and, with SMS, to VSAM data sets.

Syntax

KEYLEN=bytes

Subparameter Definition
bytes
Specifies the length, in bytes, of the keys used in the data set.

The number of bytes is:

e 0 to 255 for non-VSAM data sets. The key length must be less than or
equal to the record length.

Note: Use only 0 for a member of a partitioned data set extended (PDSE).
Use 0 or 8 to perform input operations on the directory of a PDSE.

e 1 to 255 for VSAM key-sequenced (RECORG=KS) data sets. A key length
must be specified, either explicitly with the KEYLEN or LIKE parameter, or
in the data class for the data set. The key length must be less than the
record length.

Overrides

KEYLEN overrides the key length specified in the data set label, and with SMS,
KEYLEN overrides the key length defined in the DATACLAS parameter for the data
set. See ['Overrides” on page 12-50

Chapter 12. DD Statement 12-125

DD: KEYOFF

Relationship to Other Parameters

Do not code the following DD parameters with the KEYLEN parameter.

* DCB=STACK
DATA DCB=TRTCH
DCB=KEYLEN DDNAME
DCB=MODE DYNAM
DCB=PRTSP

Examples of the KEYLEN Parameter

Example 1
//bDD4 DD DSNAME=JST,DISP=(NEW,KEEP) ,UNIT=3350,
// SPACE=(CYL, (12,2)),DCB=(A.B.C),KEYLEN=8

DD statement DD4 defines a new data set named JST and requests that the
system copy the DCB information from the data set label of the cataloged data set
named A.B.C. If the data set label contains a key length specification, it is
overridden by the KEYLEN coded on this DD statement.

Example 2

//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
/l KEYLEN=6

In the example, where the data class VSAM1 defines a key-sequenced VSAM data
set, the key length of 6 overrides the key length defined in the data class.

KEYOFF Parameter

Parameter Type
Keyword, optional — use this parameter only with SMS

Without SMS, use the RKP subparameter of the DCB parameter described on page
12-69

Purpose
Use the KEYOFF parameter to specify the key offset, the position of the first byte
of the record key in each logical record of a new VSAM data set. The first byte of

a logical record is position 0.

If SMS is not installed or is not active, the system syntax checks and then ignores
the KEYOFF parameter.

Code the KEYOFF parameter only for a VSAM key-sequenced data set
(RECORG=KS).

Code the KEYOFF parameter when you want to (1) specify a key offset for the data
set or (2) override the key offset defined in the data class of the data set.

References

See |0S/390 DFSMS: Using Data Setg for information on VSAM key-sequenced
data sets.

12-126 0S/390 V2R10.0 MVS JCL Reference

DD: LABEL

Syntax

KEYOFF=offset-to-key

Subparameter Definition

offset-to-key
Specifies the position (offset), in bytes, of the first byte of the key in each
record. The offset is 0 to the difference between the record length (LRECL) and
key length (KEYLEN), in the range 0 to 32760.

Overrides

KEYOFF overrides the key offset defined in the DATACLAS parameter for the data
set. See [‘Overrides” on page 12-50|

Relationship to Other Parameters
Do not code the following DD parameters with the KEYOFF parameter.

* DYNAM
DATA FCB
DCB=RESERVE ucs
DCB=RKP

DDNAME

Example of the KEYOFF Parameter

//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
// KEYOFF=2

In the example, the data class VSAM1 defines a key-sequenced VSAM data set.
The key offset of 2 overrides the key offset defined in the data class and specifies
that the first byte of the key is in the third position of each record.

LABEL Parameter

Parameter Type
Keyword, optional
Purpose

Use the LABEL parameter to specify for a tape or direct access data set:

e The type and contents of the label or labels for the data set.
» |f a password is required to access the data set.

e |f the system is to open the data set only for input or output.
¢ The expiration date or retention period for the data set.

Although subparameters RETPD and EXPDT are shown in the syntax of the
LABEL parameter, you should use the RETPD or EXPDT DD parameter to specify
a retention period or expiration date for the data set.

For a tape data set, this parameter can also specify the relative position of the data
set on the volume.

Chapter 12. DD Statement 12-127

DD: LABEL

References

For details on tape labels, see|0S/390 DFSMS: Using Magnetic Tapes. For details
on direct access labels, see [0S/390 DFSMS: Usina Data Setd For information on

protecting a data set with a password, see |[0S/390 DFSMSdfp Advanced Services.

Syntax

LABEL=([data-set-sequence-number] [,1abel] [,PASSWORD][,IN][,RETPD=nnnn D
[, 1 [,NOPWREAD] [,0UT] [,EXPDT={yyddd 1
[,] [{yyyy/ddd}]

label is one of the following:
SL
SUL
AL
AUL
NSL
NL
BLP
LTM

The first four subparameters are positional; the last subparameter is keyword. If you omit any
positional subparameters but code a following positional subparameter, indicate each omitted
subparameter by a comma. If the following subparameter is keyword (EXPDT or RETPD), commas
are not needed to indicate omitted subparameters. For example:

LABEL=(0001,SUL,PASSWORD,IN)
LABEL=(,SUL,PASSWORD)
LABEL=(,SUL,,IN,EXPDT=97033)
LABEL=(,,PASSWORD,EXPDT=1997/033)
LABEL=(,SUL,EXPDT=1997/033)
LABEL=(0001,,,IN)
LABEL=(0001,EXPDT=1997/033)

If you specify only the data-set-sequence-number or only the retention period or only the expiration
date, you can omit the parentheses. For example, code LABEL=data-set-sequence-number,
LABEL=RETPD=nnnn, LABEL=EXPDT=yyddd, or LABEL=EXPDT=yyyy/ddd.

Alternate Syntax for RETPD and EXPDT

RETPD and EXPDT should be specified as DD parameters rather than
subparameters of the LABEL parameter. This allows you to specify a retention
period or expiration date without the need to code LABEL.
For example, code RETPD and EXPDT on the DD statement as:

RETPD=366 or EXPDT=2006/033

See the DD RETPD parameter described on page[12-171] and the DD EXPDT
parameter described on page[12-111

Subparameter Definition

Data-Set-Sequence-Number

data-set-sequence-number
Identifies the relative position of a data set on a tape volume. The
data-set-sequence-number is 1 through 4 decimal digits. Omit this
subparameter or code 0 or 1 to indicate the first data set on the tape volume.

Omit this subparameter for the following:

12-128 0S/390 V2R10.0 MVS JCL Reference

DD: LABEL

e Cataloged data sets. The system obtains the data-set-sequence-number
from the catalog.

« A DD DSNAME parameter that requests all members of a generation data
group (GDG). The system retrieves the data-set-sequence-number from the
catalog.

* A data set passed from a preceding step. The system obtains the
data-set-sequence-number from the passing step.

Label

The system does not retain label type information for cataloged data sets; if the
label type is not coded in the LABEL parameter for a cataloged data set, the
system assumes SL.

For a data set on a direct access device, the system obtains the label type from the
DD statement; the label type is not obtained from any other source referred to in
the DD statement. Only two label types are valid for direct access devices: SL and
SUL.

SL Indicates that a data set has IBM standard labels. If this subparameter is
omitted, SL is the default.

Code only SL or SUL for data sets on direct access devices.

If the LABEL parameter is coded on a SYSCKEQOV DD statement, code
LABEL=(,SL).

SUL
Indicates that a data set has both IBM standard and user labels.

Code only SL or SUL for data sets on direct access devices.

Do not code SUL for partitioned or indexed sequential data sets.

AL
Indicates that a tape data set has ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 labels.

If you specify AL for a tape generation data set for output, the ending
.GnnnnVnn (where n=0 through 9) will not appear as part of the file identifier
(data set name field) of the HDR1 label. Instead, the data is placed in the
generation and version number fields of the HDR1 label.

AUL
Indicates that a tape data set has user labels and ISO/ANSI Version 1 or
ISO/ANSI/FIPS Version 3 labels.

NSL
Indicates that a tape data set has nonstandard labels.

Before you code NSL, ensure that your installation has created and installed
non-standard label processing routines, described in [0S/390 DFSMS
[Installation Exits|

NL
Indicates that a tape data set has no labels.

When retrieving two or more data sets from several NL or BLP tape volumes,
concatenate the DD statements and repeat the LABEL parameter on each DD
statement.

Chapter 12. DD Statement 12-129

DD: LABEL

If you are processing ASCII data on unlabeled tapes, the data control block
must specify OPTCD=Q.

BLP
Requests that the system bypass label processing for a tape data set.

If the installation did not specify the BLP feature in the reader cataloged
procedure, BLP has the same effect as NL.

If you code BLP and the tape volume has labels, a tapemark delimits the data
set. To let the system position a tape with labels to the proper data set, code
the data-set-sequence-number subparameter; the number must reflect all labels
and data sets that precede the desired data set.

Do not specify BLP when the DD DSNAME parameter requests all members of
a generation data group (GDG); the system obtains the
data-set-sequence-number from the catalog. Therefore, coding BLP might
result in incorrect tape positioning.

When retrieving two or more data sets from several NL or BLP tape volumes,
or when retrieving a data set from several BLP tape volumes and those
volumes have labels, concatenate the DD statements and repeat the LABEL
parameter on each DD statement.

LTM
Indicates that the data set has a leading tapemark.

Notes:

1. You may use the LABEL parameter when allocating a system-managed tape
volume, but you cannot use the NSL or LTM subparameters. If the ACS routine
does not exclude these subparameters, the job will fail with JCL errors.

System-managed tape volumes must be IBM standard label or ANSI standard
tapes.

2. LABEL=(,,,IN) is the system-managed tape library equivalent of either
UNIT=SYS3480R or UNIT=SYS348XR, which represent overriding esoteric unit
names.

Password Protection

For an SMS-managed data set (one with an assigned storage class), SMS sets the
password indicators in the VTOC and catalog but ignores the indicators and does
not use password protection for the data set. See the DD SECMODEL parameter
described on page

Password protecting data sets requires the following:

e Data set names no longer than 17 characters. MVS retains in the tape label
only the rightmost 17 characters of the data set name. Consequently, longer
names could be identical in password checks.

¢ Volumes with IBM standard labels or ISO/ANSI/FIPS Version 3 labels.

e A password assigned in the PASSWORD data set. If a password is not
assigned, the system will abnormally terminate a job step when it attempts to
open the data set for output, if NOPWREAD is coded, or for input or output, if
PASSWORD is coded.

12-130 0S/390 V2R10.0 MVS JCL Reference

Defaults

DD: LABEL

To create a password-protected data set following an existing password-protected
data set, code the password of the existing data set. The password must be the
same in both the existing and the new data set.

To password-protect a data set on a tape volume containing other data sets, you
must password-protect all the data sets on the volume and the passwords must be
the same for all data sets.

To password-protect an existing data set using PASSWORD or NOPWREAD, open
the data set for output the first time it is used during the job step.

PASSWORD
Indicates that a data set cannot be read, changed, deleted, or written to unless
the system operator or TSO/E user supplies the correct password.

NOPWREAD
Indicates that a data set cannot be changed, deleted, or written to unless the
system operator or TSO/E user supplies the correct password. No password is
necessary for reading the data set.

Input or Output Processing

IN Indicates that a BSAM data set opened for INOUT or a BDAM data set opened
for UPDAT is to be read only. The IN subparameter overrides the processing
option in the assembler OPEN macro instruction. Any attempt by the
processing program to write in the data set makes the system give control to
the error analysis (SYNAD) routine.

ouTt
Indicates that a BSAM data set opened for OUTIN or OUTINX is to be written
in only. The OUT subparameter overrides the processing option in the
assembler OPEN macro instruction. Any attempt by the processing program to
read the data set makes the system give control to the error analysis (SYNAD)
routine.

Retention Period or Expiration Date for Data Set
You should avoid using the RETPD and EXPDT subparameters on the LABEL
parameter to specify a retention period or expiration date for the data set.

Use the DD RETPD parameter (described on page [12-171) or the DD EXPDT
parameter (described on page [12-111)), which do the same function. This allows
you to specify a retention period or expiration date without the need to code the
LABEL parameter.

* If no data-set-sequence-number subparameter is specified or if the number is
coded as 0 or 1, the default is the first data set on the tape volume, unless the
data set is passed or cataloged.

* If no label type subparameter is specified, the default is only IBM standard
labels (SL).

Chapter 12. DD Statement 12-131

DD: LABEL

Relationship to Other Parameters

Do not code the following parameters with the LABEL parameter.

* DATA MODIFY
BURST DDNAME QNAME
CHARS DYNAM SYSOUT
COPIES FLASH

Do not specify the LABEL parameter with the FUNC subparameter of the DCB
parameter. The results are unpredictable.

ISO/ANSI/FIPS Version 3 tape data sets can be protected by use of the ACCODE
parameter.

If you specify a LABEL parameter on a SYSCKEOV DD statement, code
LABEL=(,SL).

Relationship to Other Control Statements

Translation

When a VOLUME=REF subparameter refers to an earlier DD statement to use the
same volume(s):

e For tape, the system copies the LABEL label type subparameter from the
referenced DD statement; the copied label type overrides the label type on the
referencing DD statement.

e For direct access, the system uses a LABEL=(,SL) or LABEL=(,SUL)
subparameter from the referencing DD statement. If the referencing DD
statement specifies any other label type, the system copies the LABEL label
type subparameter from the referenced DD statement; the copied label type
overrides the label type on the referencing DD statement.

e You do not need to provide a data set sequence number when the DD
DSNAME parameter references all the members of a GDG or a single member
through a relative generation number; the system obtains the data from the
catalog. For all other data set names, however, you must provide the data set
sequence number on the LABEL parameter.

AL or AUL in the LABEL parameter requests translation between EBCDIC and
ASCII. You can also request translation by specifying OPTCD=Q in the data control
block. If the tape is not labeled, LABEL=(,NL), you must specify OPTCD=Q for
translation to occur.

Examples of the LABEL Parameter

Example 1
//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL,RETPD=188)

DD statement DD1 defines a new data set. The LABEL parameter tells the system:

e This data set is to be the third data set on the tape volume.
* This tape volume has nonstandard labels.
* This data set is to be kept for 188 days.

12-132 0S/390 V2R10.0 MVS JCL Reference

DD: LABEL

Although LABEL=(3,NSL,RETPD=188) is valid, it is better practice to use the DD
RETPD parameter as follows:

//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
/l VOLUME=SER=T2,LABEL=(3,NSL) ,RETPD=188

Example 2
//DD2 DD DSNAME=A.B.C,DISP=(,CATLG,DELETE),UNIT=3400-5,LABEL=(,NL)

DD statement DD2 defines a new data set, requests that the system catalog it, and
indicates that the data set has no labels. Each time this data set is used by a
program, the DD statement must include LABEL=(,NL).

Example 3
//DD3 DD DSNAME=SPECS,UNIT=3400-5,VOLUME=SER=10222,
/l DISP=0LD,LABEL=4

DD statement DD3 indicates an existing data set. The LABEL parameter indicates
that the data set is fourth on the tape volume.

Example 4

//STEPL EXEC PGM=FIV

//DDX DD DSNAME=CLEAR,DISP=(OLD,PASS),UNIT=3400-5,
/] VOLUME=SER=1257,, LABEL=(,NSL)

//STEP2 EXEC PGM=BOS

//DDY DD DSNAME=+.STEP1.DDX,DISP=0LD,LABEL=(,NSL)

DD statement DDX in STEP1 indicates an existing data set with nonstandard labels
and requests that the system pass the data set. DD statement DDY in STEP2
receives the data set. DDY contains the label type, because the system does not
obtain the label type through the backward reference in the DSNAME parameter.

Example 5
//DDZ DD DSNAME=CATDS,DISP=0LD,LABEL=(,SUL)

DD statement DDZ indicates an existing, cataloged data set on direct access. The
data set has IBM standard labels and user labels. The LABEL parameter is
required; otherwise, if the DD statement does not contain a LABEL parameter, the
system assumes that a direct access data set has SL labels.

Example 6
//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),LABEL=EXPDT=2006/033,
// UNIT=3350,SPACE=(TRK, (1,1)),VOLUME=SER=663344

DD statement DD7 defines a new data set, requests the system to keep the data
set, and indicates that the data set cannot be deleted or written over until the
expiration date of February 2, 2006.

Although LABEL=EXPDT=2006/033 is valid, it is better practice to use the DD
EXPDT parameter as follows:

//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),EXPDT=2006/033,
// UNIT=3350,SPACE=(TRK,(1,1)),VOLUME=SER=663344

Chapter 12. DD Statement 12-133

DD: LGSTREAM

LGSTREAM Parameter

Syntax

Parameter Type

Keyword, optional

Purpose

Use the LGSTREAM parameter to specify the prefix of the name of the log stream

for an SMS-managed VSAM data set. Use it only:

e For allocating SMS-managed VSAM data sets that will be accessed using
record level sharing (RLS).

e On a system that includes DFSMS/MVS Version 1 Release 4 or later. (The
system ignores the LGSTREAM parameter when operating with DFSMS 1.3
and earlier releases.)

LGSTREAM=name

The name, up to a maximum of twenty-six characters, consists of one or more
segments. Each segment may contain one to eight characters, which may be
alphabetic, numeric, or national ($, #, @) characters. Segments are joined by
periods, with periods being counted as characters towards the limit of twenty-six.
The first character of each segment must be non-numeric.

Subparameter Definition

Defaults

Overrides

name
Specifies the name of the prefix the system logger uses for the forward
recovery log stream for recording changes made to the data set when
accessed in the RLS mode. The system logger adds other qualifiers to the end
of the LGSTREAM name to generate the data set name where it keeps the
forward recovery logs.

If you do not code a LGSTREAM parameter the system will assign the value
specified in the SMS data class assigned to the data set, if applicable.

The system ignores LGSTREAM specifications for non-SMS-managed and
non-VSAM data sets and for VSAM linear data sets.

The LGSTREAM name on a DD statement can override the LOGSTREAMID name
specified in the SMS data class.

12-134 0S/390 V2R10.0 MVS JCL Reference

DD: LIKE

Relationship to Other Parameters

Code a disposition of NEW or of MOD treated as NEW. (The system ignores the
LGSTREAM parameter for existing data sets.)

Do not code the following DD parameters with the LGSTREAM parameter.

* DLM PATHDISP
BURST DSNTYPE QNAME
CHARS DYNAM SEGMENT
COPIES FLASH SPIN
DATA MODIFY SYSOUT
DCB=DSORG OUTPUT TERM
DCB=RECFM PATHOPTS ucs
DDNAME PATHMODE

Example of the LGSTREAM Parameter

//FRED DD DSN=VSAM.DATASET,LGSTREAM=SSAB1234.NEW,RECORG=KS,
// KEYLEN=8,KEYOFF=0,DISP=(,KEEP)

In this example, the system will create an SMS-managed VSAM key-sequenced
data set if the storage administrator assigns a data class that provides other
parameters such as SPACE and LOG=ALL, and assigns a POOL storage group.
The system logger will use the name SSAB1234.NEW as the prefix to generate the
data set name where it will keep the forward recovery logs.

LIKE Parameter

Parameter Type
Keyword, optional — use this parameter only with SMS

Without SMS, use the DCB=dsname form of the DCB parameter described on page
12-52

Purpose

Use the LIKE parameter to specify the allocation attributes of a new data set by
copying the attributes of a model data set, which must be an existing cataloged
data set and reside on a direct access volume.

The following attributes are copied from the model data set to the new data set:

e Data set organization
— Record organization (RECORG) or
— Record format (RECFM)

e Record length (LRECL)

e Key length (KEYLEN)

e Key offset (KEYOFF)

* Type, PDS or PDSE (DSNTYPE)

e Space allocation (AVGREC and SPACE)

Unless you explicitly code the SPACE parameter for the new data set, the
system determines the space to be allocated for the new data set by adding up
the space allocated in the first three extents of the model data set. Therefore,
the space allocated for the new data set will generally not match the space that

Chapter 12. DD Statement 12-135

DD: LIKE

Syntax

was specified for the model data set. Also, the system allocates the space for
the new data set in tracks.

Note: Directory quantity is picked up as part of the space allocation attribute
except when the model data set is a PDSE. When you create a PDS,
the directory blocks must be specified directly on the JCL by using the
SPACE parameter.

There is no requirement that either the new data set or the model data set must be
SMS-managed. If the new data set is to reside on tape:

¢ The model data set must be a sequential DASD data set
e Only the record format (RECFM) and the record length (LRECL) attributes are
copied to the new data set.

For VSAM data set compression, the LIKE parameter copies existing data set
attributes. That is, LIKE processing on a model data set that is compressed will
pass the attribute to the new data set. This means that specifying compaction in
DATACLAS is not the only way compression can be achieved. For additional
information on VSAM data set compression, see [0S/390 DFSMS Migration,

When you specify the LIKE parameter on a JCL DD statement, the SMS read-only
variable values that correspond to the attributes copied from the model data set are
not available as input to the ACS routines. For more information on SMS read-only
variables, see [0S/390 DFSMSdfp Storage Administration Referencel

If SMS is not installed or is not active, the system syntax checks and then ignores
the LIKE parameter.

The retention period (RETPD) or expiration date (EXPDT) is not copied to the new
data set.

Note: Do not use the LIKE parameter to copy attributes from a temporary data set
(&&dsname), partitioned data set if a member name is included, and relative
generation number for a GDG.

LIKE=data-set-name

Subparameter Definition

Overrides

data-set-name
Specifies the data set name (dsname) of the model data set whose attributes
are to be used as the attributes of the new data set.

Any attributes obtained using the LIKE parameter override the corresponding
attributes in the DATACLAS parameter.

Any attributes you specify on the same DD statement with the following parameters
override the corresponding attributes obtained from the model data set.

AVGREC (record request and space quantity)
DSNTYPE (type, PDS or PDSE)

12-136 0S/390 V2R10.0 MVS JCL Reference

DD: LRECL

KEYLEN (key length)

KEYOFF (key offset)

LRECL (record length)

RECORG (record organization) or RECFM (record format)

SPACE (average record length, primary, secondary, and directory quantity)

Relationship to Other Parameters

Do not code the following DD parameters with the LIKE parameter.

DYNAM
REFDD
SYSOUT

Examples of the LIKE Parameter

Example 1
//SMSDS6 DD DSNAME=MYDS6.PGM, LIKE=MYDSCAT.PGM,DISP=(NEW,KEEP)

In the example, the data set attributes used for MYDS6.PGM are obtained from the
cataloged model data set MYDSCAT.PGM.

Example 2

//SMSDS7 DD DSNAME=MYDS7.PGM,LIKE=MYDSCAT.PGM,DISP=(NEW,KEEP),
// LRECL=1024

In the example, the data set attributes used for MYDS7.PGM are obtained from the
cataloged model data set MYDSCAT.PGM. Also, the logical record length of 1024
overrides the logical record length obtained from the model data set.

LRECL Parameter

Syntax

Parameter Type

Keyword, optional

Purpose

Use the LRECL parameter to specify the length of the records in a new data set.

Code the LRECL parameter when you want to
e Specify the logical record length for the data set, or
e With SMS, override the record length defined in the data class of the data set.

LRECL applies to data sets with the BPAM, BSAM, EXCP, QISAM, QSAM, and
TCAM access methods, and with SMS, to VSAM data sets.

LRECL=bytes

Chapter 12. DD Statement 12-137

DD: LRECL

Subparameter Definition
bytes
Specifies (1) the length, in bytes, for fixed length records or (2) the maximum
length, in bytes, for variable-length records.

The value of bytes is:
e 1 to 32760 for non-VSAM data sets.

e 1 to 32761 for VSAM key-sequenced (KS), entry-sequenced (ES), or
relative record (RR) data sets. (LRECL does not apply to VSAM linear
space, RECORG=LS, data sets.)

For VSAM key-sequenced (KS) data sets, a record length must be
specified, either explicitly with the LRECL or LIKE parameter, or in the data
class for the data set. The record length must be greater than the key
length.

Note: When RECFM is F or U, the length must not exceed DCB BLKSIZE.
For RECFM=D or V, the length must not exceed BLKSIZE minus 4. For
RECFM=VS, the length can exceed BLKSIZE. For unblocked records
when DCB RKP=0, the length is for only the data portion of the record.
LRECL=0 is valid only for RECFM=U.

Additional Syntax for LRECL=bytes

LRECL=nnnnnK
Specifies the length in kilobytes for variable-length spanned records in
ISO/ANSI/FIPS Version 3 tape data sets that are processed by the Data
Facility Product using the extended logical record interface (XLRI). nnnnn is
from 1 through 16383 and indicates multiples of 1024 bytes. The value in the
DCB macro must already be coded as LRECL=0K or LRECL=nnnnnK. If a K is
coded for any other type of data set, only the numeric value of LRECL is
recognized.

LRECL=X
For QSAM only, specifies that the logical record length exceeds 32760 bytes
for variable-length spanned records. This option is not valid for ISO/ANSI/FIPS
Version 3 variable-length records.

Overrides
LRECL overrides the record length specified in the data set label, and with SMS,
LRECL overrides the record length defined in the DATACLAS parameter for the
data set. See[‘Overrides” on page 12-50}

Relationship to Other Parameters
Do not code the following DD parameters with the LRECL parameter.

DCB=LRECL
DDNAME
DYNAM

12-138 0S/390 V2R10.0 MVS JCL Reference

DD: MGMTCLAS

Examples of the LRECL Parameter

Example 1
//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
/l RECFM=FB,LRECL=326,SPACE=(23472,(200,40))

In the example, the logical record length of 326 is used for the new data set EVER.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
/l LRECL=256

In the example, the logical record length of 256 overrides the logical record length
defined in the data class for the data set.

MGMTCLAS Parameter

Parameter Type

Keyword, optional — use this parameter only with SMS and for SMS-managed data
sets

Without SMS, there are no DD parameters that provide this function.

Purpose

Use the MGMTCLAS parameter to specify a management class for a new
SMS-managed data set. The storage administrator at your installation defines the

names of the management classes you can code on the MGMTCLAS parameter.

After the data set is allocated, attributes in the management class control:

e The migration of the data set, which includes migration from primary storage to
DFSMShsm-owned storage to archival storage.

e The backup of the data set, which includes frequency of backup, number of
versions, and retention criteria for backup versions.

The Hierarchical Storage Manager (DFSMShsm) or a functionally equivalent
program performs these functions.

If SMS is not installed or is not active, the system syntax checks and then ignores
the MGMTCLAS parameter.

SMS ignores the MGMTCLAS parameter if you specify it for an existing data set.
The use of a management class can be protected by RACF.

References

See |0S/390 DFSMS: Using the Interactive Storage Management Facility| for
information on how to use ISMF to view your installation-defined management
classes.

Chapter 12. DD Statement 12-139

DD: MGMTCLAS

Syntax

MGMTCLAS=management-class-name

Subparameter Definition

Defaults

Overrides

management-class-name
Specifies the name of a management class to be used for management of the
SMS-managed data set after the data set is allocated.

The name, one to eight characters, is defined by the storage administrator at
your installation.

If you do not specify MGMTCLAS for a new data set and the storage administrator
has provided an installation-written automatic class selection (ACS) routine, the
ACS routine may select a management class for the data set. Check with your
storage administrator to determine if an ACS routine will select a management
class for the new data set, in which case you do not need to specify MGMTCLAS.

You cannot override management class attributes via JCL parameters. With SMS,
MGMTCLAS overrides the attributes defined in the DATACLAS parameter for the
data set. See[‘Overrides” on page 12-50

The management class for a data set defines a maximum value for the expiration
date or retention period of the data set. This maximum limits the values that are
specified on the EXPDT or RETPD parameter, or defined in the data class for the
data set.

An ACS routine can override the management class that you specify on the
MGMTCLAS parameter.

Relationship to Other Parameters

Do not code the following DD parameters with the MGMTCLAS parameter.

* DYNAM DATA QNAME
DDNAME

Code MGMTCLAS only when you specify a storage class for the data set (via the
STORCLAS parameter) or an ACS routine selects a storage class.

Example of the MGMTCLAS Parameter

//SMSDS1 DD DSNAME=MYDS1.PGM,DATACLAS=DCLAS1,STORCLAS=SCLAS1,
/l MGMTCLAS=MCLAS®O1,DISP=(NEW,KEEP)

In the example, SMS uses the attributes in the management class named
MCLASO1 to handle the migration and backup of the SMS-managed data set. Note
that installation-written ACS routines may override the specified management class,
storage class, and data class.

12-140 0S/390 V2R10.0 MVS JCL Reference

DD: MODIFY

MODIFY Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the MODIFY parameter to specify a copy-modification module that tells JES
how to print this sysout data set on a 3800 Printing Subsystem. The module can
specify the following:

e Legends.
e Column headings.
e Where and on which copies the data is to be printed.

The module is defined and stored in SYS1.IMAGELIB using the IEBIMAGE utility
program.

Note: MODIFY applies only for the 3800 Printing Subsystem Models 1 and 2 and
the 3800 Printing Subsystem Models 3, 6, and 8 in compatibility mode.

References

For more information on the copy modification module and the IEBIMAGE utility
program, see |[0S/390 DFSMSdifp Utilities.

MODIFY= {module-name
{ (module-name[,trc])}

¢ You must code the module-name.

¢ The trc subparameter is optional. If you omit it, you can omit the parentheses. However, if you
omit it, you must not code it as a null; for example, MODIFY=(TAB1,) is invalid.

Subparameter Definition

module-name
Identifies a copy-modification module in SYS1.IMAGELIB. The module-name is
1 through 4 alphanumeric or national ($, #, @) characters.

trc Identifies which table-name in the CHARS parameter is to be used. This table
reference character is 0 for the first table-name specified, 1 for the second, 2
for the third, or 3 for the fourth. The CHARS parameter is on the following, in
override order:

1. This DD statement.
. A referenced OUTPUT JCL statement.

. A statement in the library member specified on the OUTPUT JCL
PAGEDEF parameter.

. A statement in the SYS1.IMAGELIB member obtained by default.

w N

N

5. A JESS3 initialization statement.

Chapter 12. DD Statement 12-141

DD: OUTLIM

Defaults

Overrides

If no MODIFY parameter is specified, JES3 uses an installation default specified at
initialization. JES2 provides no installation default at initialization.

If you do not specify trc or if the tre value is greater than the number of
table-names in the CHARS parameter, JES2 uses the first table named in the
CHARS parameter and JES3 uses the default character arrangement table.

A MODIFY parameter on a sysout DD statement overrides an OUTPUT JCL
MODIFY parameter.

Note: A null first subparameter is invalid in a MODIFY parameter on a DD
statement, but is permitted on an OUTPUT JCL statement.

Relationship to Other Parameters

Do not code the following parameters with the MODIFY parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM SUBSYS
DDNAME LABEL VOLUME

Relationship to Other Control Statements

MODIFY can also be coded on the following:

e The OUTPUT JCL statement.
e The JES3 //*FORMAT PR statement.
e The JES2 /*OUTPUT statement.

The second character of each logical record can be a TRC code, so that each
record can be printed in a different font. This way of specifying fonts is indicated by
the OUTPUT JCL TRC parameter.

Example of the MODIFY Parameter

//DD1 DD UNIT=3800,MODIFY=(A,0),CHARS=(GS15,GS10)

In this example, the MODIFY parameter requests that the data in the
copy-modification module named A replace variable data in the data set to be
printed by the 3800. Module A defines which positions are to be replaced and
which copies are to be modified. The second subparameter in MODIFY specifies
that the first character arrangement table in the CHARS parameter, GS15, be used.

OUTLIM Parameter

Parameter Type
Keyword, optional
Purpose

Use the OUTLIM parameter to limit the number of logical records in the sysout data
set defined by this DD statement. When the limit is reached, the system exits to the

12-142 0S/390 V2R10.0 MVS JCL Reference

DD: OUTLIM

SYSOUT limit exit routine. If the installation supplies an installation-written routine,
the routine can determine whether to terminate the job or increase the limit. If the
installation does not supply a routine, the system terminates the job.

Note: OUTLIM is valid only on a DD statement with a SYSOUT parameter.

References

For more information on the SYSOUT limit exit routine, see|0S/390 MVS
|Installation Exits].

Syntax

OUTLIM=number

Subparameter Definition
number

Specifies the maximum number of logical records. The number is 1 through 8
decimal digits from 1 through 16777215.

Default

(1) If no OUTLIM parameter is specified or OUTLIM=0 is coded and (2) if output is
not limited by JES control statements, JES3 uses an installation default specified at
initialization; JES2 provides no installation default at initialization.

Relationship to Other Parameters
Code the OUTLIM parameter only on a DD statement with the SYSOUT parameter.

Do not code the OUTLIM parameter with the DCB subparameters CPRI or
THRESH; these subparameters can alter the OUTLIM value.

On Dump DD Statements

On a SYSABEND or SYSUDUMP DD statement:

e JES3 ignores the OUTLIM parameter.
e JES2 limits the output as specified on the OUTLIM parameter.

Relationship to Other Control Statements
Output can also be limited by the following:

e The LINES, BYTES, PAGES, or CARDS parameter of the JES2 /*JOBPARM
statement.

e The LINES, BYTES, PAGES, or CARDS parameter of the JES3 //*MAIN
statement.

e The LINES, BYTES, PAGES, or CARDS parameter of the JOB statement.

Chapter 12. DD Statement 12-143

DD: OUTPUT

Example of the OUTLIM Parameter
//0UTDD DD SYSOUT=F,0UTLIM=1000

The limit for the number of logical records is 1000.

OUTPUT Parameter

Parameter Type
Keyword, optional
Purpose

Use the OUTPUT parameter with the SYSOUT parameter to associate a sysout
data set explicitly with an OUTPUT JCL statement. JES processes the sysout data
set using the options from this DD statement combined with the options from the
referenced OUTPUT JCL statement.

When the OUTPUT parameter references more than one OUTPUT JCL statement,
the system produces separate output for each OUTPUT JCL statement.

Note: Code the OUTPUT parameter only on a DD statement with a SYSOUT
parameter. Otherwise, the system checks the OUTPUT parameter for
syntax then ignores it.

Syntax

OUTPUT= {reference }
{(reference[,reference]...)}

A reference is one of the following:
*,name

*.stepname.name
*.stepname.procstepname.name

¢ You can omit the parentheses if you code only one reference.

¢ You must not code a null in an OUTPUT parameter. For example, OUTPUT=(,*.name) is
invalid.

¢ You can reference a maximum of 128 OUTPUT JCL statements on one OUTPUT parameter.

¢ You can code references in any combination. For example, the following are valid:

//EXA DD SYSOUT=A,OUTPUT=(*.name,*.name,*.stepname.name)
//EXB DD SYSOUT=A,OUTPUT=(*.stepname.name,
// *,stepname.procstepname.name,*.name)

¢ You can code the references to OUTPUT JCL statements in any order.

Subparameter Definition

*.name
Refers to an earlier OUTPUT JCL statement with name in its name field. The
system searches for the OUTPUT JCL statement first in the same step, then
before the first EXEC statement of the job.

*.stepname.name
Refers to an earlier OUTPUT JCL statement, name, in this step or an earlier

step, stepname, in the same job.

12-144 0S/390 V2R10.0 MVS JCL Reference

Defaults

Overrides

DD: OUTPUT

*.stepname.procstepname.name
Refers to an OUTPUT JCL statement in a cataloged or in-stream procedure.
Stepname is the name of this job step or an earlier job step that calls the
procedure, procstepname is the name of the procedure step that contains the
OUTPUT JCL statement, and name is the name field of the OUTPUT JCL
statement.

If you do not code an OUTPUT parameter on a sysout DD statement, JES obtains
processing options for the sysout data set in the following order:

1. From each OUTPUT JCL statement containing DEFAULT=YES in the same
step.

2. From each OUTPUT JCL statement containing DEFAULT=YES before the first
EXEC statement in the job, provided that the step contains no OUTPUT JCL
statements with DEFAULT=YES.

3. Only from the sysout DD statement, provided that neither the step nor job
contains any OUTPUT JCL statements with DEFAULT=YES.

If you do not specify a SYSOUT class on the DD statement, JES3 uses the
truncation value associated with the first referenced (or defaulted) OUTPUT
statement that does specify a class. If this DD statement specifies an OUTPUT
class, JES3 accepts that class and its associated truncation value.

When an OUTPUT JCL statement is used with the sysout DD statement to specify
processing, JES handles parameters as follows:

 If a parameter appears on the DD statement, JES uses the parameter.

 If a parameter appears only on the OUTPUT JCL statement, JES uses the
parameter.

¢ If the same parameter appears on both statements, JES uses the DD
parameter.

JES uses the whole overriding parameter, ignoring the whole overridden parameter.
If a subparameter is left off the overriding parameter, the system does not pick up
that subparameter from the overridden parameter. For example:

//EXAMP2 QUTPUT FLASH=(ABCD,3)
//FVZ2 DD SYSOUT=F,QUTPUT=+.EXAMP2, FLASH=(EFGH)

Only EFGH is used. The system ignores all of the FLASH parameter on the
OUTPUT JCL statement, including the second parameter.

Relationship to Other Parameters

Code the OUTPUT parameter only on a DD statement with the SYSOUT
parameter.

With INTRDR Subparameter in SYSOUT Parameter

Do not code an OUTPUT parameter when the SYSOUT parameter specifies a
JES2 internal reader by an INTRDR parameter.

Null Subparameters

Chapter 12. DD Statement 12-145

DD: OUTPUT

A null first subparameter is invalid in a FLASH or MODIFY parameter on a DD
statement, but is permitted on an OUTPUT JCL statement. For example,
MODIFY=(,3) is valid only on an OUTPUT JCL statement.

SYSOUT Third Subparameter

You cannot reference a JES2 /*OUTPUT statement using the third subparameter of
the SYSOUT parameter if either of the following is also coded:

e The OUTPUT parameter on the same DD statement.

e An OUTPUT JCL statement containing DEFAULT=YES in the same step or
before the EXEC statement of the job, when the DD statement does not
contain an OUTPUT parameter.

DEFAULT Parameter on OUTPUT JCL Statement

If you code DEFAULT=YES on an OUTPUT JCL statement, you can still refer to
that OUTPUT JCL statement in the OUTPUT parameter of a sysout DD statement.

Location in the JCL

All referenced OUTPUT JCL statements must precede the DD statement that refers
to them. If the referencing DD statement appears in an in-stream or cataloged
procedure, the referenced OUTPUT JCL statement must precede the DD statement
in the procedure. A sysout DD statement in a procedure cannot refer to an
OUTPUT JCL statement in the calling step.

No Match for OUTPUT Name

If the system finds no match for the name coded in the OUTPUT parameter, the
system issues a JCL error message and fails the job.

Processing Options in Multiple References

A sysout DD statement can refer to more than one OUTPUT JCL statement, either
explicitly in an OUTPUT parameter containing more than one reference or implicitly
when several default OUTPUT JCL statements apply. The processing options for a
sysout data set come from one sysout DD statement and one OUTPUT JCL
statement. In multiple references, each combination of sysout DD statement and
one of the referenced OUTPUT JCL statements produces a separate set of printed
or punched output.

Processing options are not cumulative across a group of OUTPUT JCL statements.

Note that in JES3, when TYPE=DSISO and/or TRUNC=YESINO are specified on
the SYSOUT initialization statement, and a sysout DD statement that does not
specify a class references multiple OUTPUT statements, the data set
DSISO/TRUNC characteristics are derived from the first class specification
encountered in the OUTPUT statements. If the DD statement does specify a class,
the DSISO/TRUNC characteristics are derived from that class.

12-146 0S/390 V2R10.0 MVS JCL Reference

DD: OUTPUT

Examples of the OUTPUT Parameter
Example 1

/131 JOB , '"MARY LUDWIG'

//JOUT OUTPUT CLASS=C,FORMS=RECP,INDEX=6

//STEP1 EXEC PGM=XYZ

//SOUT OUTPUT CLASS=H,BURST=YES,CHARS=GT12,FLASH=BLHD
//ALL DD SYSOUT=(,) ,0UTPUT=(*.JOUT,*.SOUT) ,COPIES=5
//IN DD *

(&ata)
/+ '

The OUTPUT parameter references two OUTPUT JCL statements. Therefore, the
system prints the single sysout data set twice:

e For DD ALL combined with OUTPUT JOUT, the sysout data set is printed in
class C. In the installation, output class C is printed on a 3211 Printer.
Combining the parameters from the DD and OUTPUT JCL statements, the
system prints 5 copies of the data set on form RECP and indents the left
margin 5 spaces.

e For DD ALL combined with OUTPUT SOUT, the sysout data set is printed in
class H. In the installation, output class H is printed on a 3800 Printing
Subsystem. Combining the parameters from the DD and OUTPUT JCL
statements, the system prints 5 copies of the data set with the forms-overlay
frame named BLHD using character-arrangement table GT12 and bursts the
output.

Example 2

/136 JOB »'SUE THACKER'

//OUTA OUTPUT DEST=HQ

//STEP1 EXEC PGM=RDR

//0UTB OUTPUT CONTROL=DOUBLE

//DS1 DD SYSOUT=A,QUTPUT=(*.0UTA,*.0UTB)
//STEP2 EXEC ~ PGM=WRT

//0UTC OUTPUT DEST=ID2742

//DS2 DD SYSOUT=A,0UTPUT=(*.0UTC,*.STEP1.0UTB)

The OUTPUT parameter on DS1 references:

e The job-level OUTPUT JCL statement OUTA to send the sysout data set to
HQ.

e The step-level OUTPUT JCL statement OUTB to print the sysout data set
double-spaced on the local 3800 Printing Subsystem used for output class A.
The OUTPUT parameter on DS2 references:

e OUTPUT JCL statement OUTB in the first step to print the sysout data set
double-spaced on the local 3800 Printing Subsystem used for output class A.

e OUTPUT JCL statement OUTC in the same step to send the sysout data set to
userid ID2742, which is attached to the local system.

Note: The references to OUTPUT JCL statements are in no particular order.

Chapter 12. DD Statement 12-147

DD: PATH

PATH Parameter

Parameter Type

Keyword, optional — use this parameter only with an HFS file

Purpose

Use the PATH parameter to specify the name of the HFS file.

Reference

For information on HFS files, see |0S/390 UNIX System Services User's Guidel

Syntax

PATH=pathname

¢ Enclose the pathname value in single quotes if it contains a character other than:

Uppercase letters
Numbers

National characters
Slash (/)

Asterisk (*)

Plus (+)

Hyphen (-)

Period (.)
Ampersand (&)

¢ Enclose the pathname value in single quotes if you continue it on another statement. For

example:
//EXA DD PATH='/u/payroll/directoryl71/DEPT64directory/account
// ingDIR/personhoursfile’

See Chapter 3. “Format of Statements” for the rules on continuing parameters in apostrophes.

Subparameter Definition
pathname
Identifies a file in a hierarchical file system (HFS). The pathname consists of
the names of the directories from the root to the file being identified, and then
the name of the file.

Each directory or filename:

Is preceded by a slash (/). The system treats any consecutive slashes as a
single slash.

Can contain symbolic parameters.
Has a length of 1 through 254 characters, not including the slash.

Consists of printable characters from X'40' through X'FE'. These printable
characters include all the characters that can be used in a portable
filename, plus additional characters. For a portable filename, use only the
portable filename character set, which is listed in|0S/390 UNIX System
[Services User's Guidd A filename can contain characters outside this
range, but it cannot be specified in JCL.

Is subject to symbolic substitution. An ampersand (&) (X'50"), followed by
a character string that matches a valid symbolic parameter in the JCL,

12-148 0S/390 V2R10.0 MVS JCL Reference

Defaults

DD: PATH

causes a substitution to occur, based on the syntax rules for symbolic
parameters.

* Is case-sensitive. Thus, /u/joe and /u/JOE and /u/Joe define three different
files.

The pathname:
* Has the form:
/namel/name2/name3/.../namen
e Begins with a slash.

e Has a length of 1 through 255 characters. The system checks the length
after substituting for any symbols and before compressing any consecutive
slashes.

Defaults for a DD statement with a PATH parameter are:

e If the PATHDISP parameter is not specified, the normal and abnormal
disposition is KEEP.

e If the PATHOPTS parameter is not specified, the status is OLD.

Relationship to Other Parameters

You can code the following parameters with the PATH parameter:

BLKSIZE
BUFNO
DSNTYPE
DUMMY
FILEDATA
LRECL
NCP
PATHDISP
PATHMODE
PATHOPTS
RECFM
TERM

Do not code PATHDISP, PATHMODE, or PATHOPTS on a DD statement without a
PATH parameter.

Do not code a PATH parameter on the following DD statements:

JOBCAT
JOBLIB
STEPCAT
STEPLIB
SYSABEND
SYSMDUMP
SYSUDUMP

Coding the PATH parameter is useful only when one of the following is true:

e The job runs on a system with both MVS SP5.2.2 or later and DFSMS/MVS
1.3. At this level, programs can use standard MVS access methods to work
with hierarchical files. See [05/390 DFSMS: Using Data Sets.

Chapter 12. DD Statement 12-149

DD: PATH

» The program being run has been coded to recognize and process the PATH
specification. Programs designed to use such DD statements must either:

— Use dynamic allocation information retrieval to obtain the information
specified for PATH, PATHOPTS, and PATHMODE, and pass it to the
open() callable service. See|0S/390 UNIX System Services User's Guide|
for details on using open().

— Use the C/370 fopen(//dd:) function. fopen() handles the differences
between DD statements with PATH and DSN specified. See|0S/390 UNIX
[System Services User's Guidg for details on using fopen().

If:
* You specify either:
— OCREAT alone

or:
— Both OCREAT and OEXCL

on the PATHOPTS parameter,

And if:

¢ The file does not exist,

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
book assumes that the application passes the subparameters to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the values specified for PATHOPTS
and passes the values to the open() function. The application program can ignore
or modify the information specified in the JCL.

Relationship to Other Statements

A PATH parameter other than /dev/null on a DD statement that overrides a
procedure statement nullifies the DUMMY parameter on the overridden statement.

Backward and forward references to a DD statement containing a PATH parameter
are not permitted. For backward references, the referring DD statement is treated
as an error. For forward references, the DD statement referred to is treated as an
error.

Dummy HFS Files

The following DD statements define a dummy HFS file. The statements are
equivalent; for DUMMY3, the extra slashes (/) are compressed to single slashes.

//DUMMY1 DD PATH='/dev/null’
//DUMMY2 DD DUMMY,PATH=/ANYNAME
//DUMMY3 DD PATH='//dev///null'

The system checks the syntax of pathnames specified with DUMMY. In the DD
statement DUMMY2, the pathname must be a valid name.

12-150 0S/390 V2R10.0 MVS JCL Reference

DD: PATHDISP

Example of the PATH Parameter

//DD1 DD PATH='/usr/applics/pay.time',PATHOPTS=0RDONLY

The DD statement specifies the HFS file pay.time that is listed in the directory
applics. The directory applics is listed in the directory usr. The PATHOPTS
parameter specifies that the program can only read the file.

The effects of the missing PATH parameters are:

* The file must already exist, because the statement does not specify
PATHOPTS=0OCREAT.

* The system will keep the file for both normal and abnormal step terminations,
because the statement does not contain a PATHDISP parameter.

e The access permissions were set with a PATHMODE parameter when the file
was created.

PATHDISP Parameter

Syntax

Parameter Type
Keyword, optional — use this parameter only with an HFS file
Purpose

Use the PATHDISP parameter to specify the disposition of an HFS file when the
job step ends normally or abnormally.

Reference

For information on HFS files, see |0S/390 UNIX System Services User's Guidel

PATHDISP={normal-termination-disposition }
={(normal-termination-disposition,abnormal-termination-disposition)}

PATHDISP=([KEEP][,KEEP 1)
=([DELETE] [,DELETE])

A normal-termination-disposition or abnormal-termination-disposition is
one of the following:

KEEP
DELETE

¢ If you omit the normal-termination-disposition parameter, you must code a comma to indicate its
absence. For example: PATHDISP=(,DELETE)

¢ If you code only the normal-termination-disposition parameter, you may omit the enclosing
parentheses.

Chapter 12. DD Statement 12-151

DD: PATHDISP

Subparameter Definition

KEEP
Specifies that the file should be kept:

e When the step ends normally, KEEP is the first subparameter.
* When the step ends abnormally, KEEP is the second subparameter.

DELETE
Specifies that the file should be deleted:

e When the step ends normally, DELETE is the first subparameter.
e When the step ends abnormally, DELETE is the second subparameter.

Deleting a file deletes the name for the file. If the file has other names created
by link() functions, DELETE does not delete the file itself. The file persists until
all of its names are deleted.

Defaults
The system uses KEEP for both the normal and abnormal dispositions:

 If you do not code a value on the PATHDISP parameter — for example,
PATHDISP=(,)

 If you do not code a PATHDISP on a DD statement with a PATH parameter

If you code only a normal-termination-disp, such as PATHDISP=DELETE, the
abnormal disposition is the same as the normal disposition.

If you code only an abnormal-termination-disp, such as PATHDISP=(,DELETE), the
system uses KEEP for the normal disposition.

Relationship to Other Parameters

Code the PATHDISP parameter only on a DD statement that contains a PATH
parameter.

You can code the following parameters with the PATHDISP parameter:

BLKSIZE
BUFNO
DSNTYPE
DUMMY
FILEDATA
LRECL
NCP

PATH
PATHMODE
PATHOPTS
RECFM
TERM

Example of the PATHDISP Parameter
//DD1 DD PATH='/usr/applics/pay.time',PATHDISP=(KEEP,DELETE)

The DD statement identifies a file that already exists. The DD statement requests
that the system keep the file, if the step ends normally. If the step ends abnormally,
the system deletes the filename and, if no other names were set using link(),
deletes the file itself.

12-152 0S/390 V2R10.0 MVS JCL Reference

DD: PATHMODE

PATHMODE Parameter

Parameter Type

Keyword, optional — use this parameter only with an HFS file

Purpose

Use the PATHMODE parameter to specify the file access attributes when the
system is creating the HFS file named on the PATH parameter. Creating the file is

specified by a PATHOPTS=0OCREAT parameter.

Reference

For information on HFS files, see the [0S/390 UNIX System Services User's Guidd

Syntax

PATHMODE={file-access-attribute
{(file-access-attribute[,file-access-attribute]...)}

A file-access-attribute is one of the following:

For file owner class: STRUSR
SIWUSR
SIXUSR
STRWXU

For file group class: SIRGRP
SIWGRP
SIXGRP
SIRWXG

For file other class: SIROTH
SIWOTH
SIXOTH
SIRWXO

To set user and group IDs: SISUID
SISGID

¢ You can specify up to 14 file-access-attributes.
e The file-access-attributes can be in any order.
¢ Duplicate file-access-attributes are treated as one specification.

¢ Do not code null positions. For example, do not code PATHMODE-=(,file-access-attribute) or
PATHMODE-=(file-access-attribute,,file-access-attribute).

Subparameter Definition

For File Owner Class
The file owner class consists of the user who created the file or who currently owns
the file. The user is identified by an OMVS user ID (UID).

SIRUSR
Specifies permission for the file owner to read the file.

SIWUSR
Specifies permission for the file owner to write the file.

Chapter 12. DD Statement 12-153

DD: PATHMODE

SIXUSR
Specifies permission for the file owner either:

e To search, if the file is a directory
» To execute the program in the file, for a file other than a directory

SIRWXU
Specifies permission for the file owner either:

e To read, write, and search, if the file is a directory
e To read, write, and execute, for a file other than a directory

This value has the same effect as specifying all three parameters (SIRUSR,
SIWUSR, and SIXUSR).

For File Group Class
The file group class contains the users who are in the same group as the file. The
group is identified by an OMVS group ID (GID).

SIRGRP
Specifies permission for users in the file group class to read the file.

SIWGRP
Specifies permission for users in the file group class to write the file.

SIXGRP
Specifies permission for users in the file group class either:

e To search, if the file is a directory
» To execute the program in the file, for a file other than a directory

SIRWXG
Specifies permission for users in the file group class either:

e To read, write, and search, if the file is a directory
e To read, write, and execute, for a file other than a directory

This value has the same effect as specifying all three parameters (SIRGRP,
SIWGRP, and SIXGRP).

For File Other Class
The file other class consists of all users other than the file owner or the members
of the file's group who can access OS/390 UNIX resources on the MVS system.

SIROTH
Specifies permission for users in the file other class to read the file.

SIWOTH
Specifies permission for users in the file other class to write the file.

SIXOTH
Specifies permission for users in the file other class either:

e To search, if the file is a directory
* To execute the program in the file, for a file other than a directory

SIRWXO
Specifies permission for users in the file other class either:

e To read, write, and search, if the file is a directory

12-154 0S/390 V2R10.0 MVS JCL Reference

Defaults

DD: PATHMODE

* To read, write, and execute, for a file other than a directory

This value has the same effect as specifying all three parameters (SIROTH,
SIWOTH, and SIXOTH).

To Set User and Group IDs in a Program

These controls allow users to run a program with the user ID of the file owner or
the group ID of the file owner of the program file. They control access authorization
a particular program is running. The file owner can set the controls any time, not
just in the DD statement.

Do not specify these controls in JCL, because they will be reset when the file is
written.

The system overrides the SISUID and SISGID parameters and sets the controls so
that no users can run the program when either:

* The DD statement creates the file
* A user writes in the file, thus changing the program

Then, for the program to be run, the file owner must reset the controls.

SISUID
Specifies that the system set the user ID of the process to be the same as the
user ID of the file owner when the file is run as a program.

SISGID
Specifies that the system set the group ID of the process to be the same as the
group ID of the file owner when the file is run as a program. The group ID is
taken from the directory in which the file resides.

When creating a new HFS file, if you do not code a PATHMODE on a DD
statement with a PATH parameter, the system sets the permissions to 0, which
prevents access by all users. If the HFS file already exists, PATHMODE is checked
for syntax but ignored. The permission bits are left as they are set.

Relationship to Other Parameters

Code the PATHMODE parameter only on a DD statement that contains both a
PATH parameter and a PATHOPTS parameter with OCREAT.

If OCREAT is not on the statement, the PATHMODE parameter is checked for
syntax and then ignored.

You can code the following parameters with the PATHMODE parameter:

Chapter 12. DD Statement 12-155

DD: PATHOPTS

BLKSIZE
BUFNO
DSNTYPE
DUMMY
FILEDATA
LRECL
NCP

PATH
PATHMODE
PATHOPTS
RECFM
TERM

If:
e You specify either:
— OCREAT alone

or:
— Both OCREAT and OEXCL

on the PATHOPTS parameter,

And if:

¢ The file does not exist,

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
book assumes that the application passes the subparameters to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the values specified for PATHOPTS
and passes the values to the open() function. The application program can ignore
or modify the information specified in the JCL.

Example of the PATHMODE Parameter

//DD1 DD PATH='/usr/applics/pay.time',PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,0CREAT,0EXCL) , PATHMODE= (SIRWXU, SIRGRP)

The DD statement requests that the file named in the PATH parameter be created.
The PATHMODE parameter specifies that the file owner can read, write, and
search or execute the file and that users in the file group can read the file.

PATHOPTS Parameter

Parameter Type
Keyword, optional — use this parameter only with an HFS file
Purpose

Use the PATHOPTS parameter to specify the access and status for the HFS file
named in the PATH parameter.

12-156 0S/390 V2R10.0 MVS JCL Reference

DD: PATHOPTS

Reference

For information on HFS files, see |0S/390 UNIX System Services User's Guidel

Syntax

PATHOPTS={file-option }
{(file-option[,file-option]...)}

A file-option can be in the access or status group and is one of the following:

Access group: ORDONLY
OWRONLY
ORDWR

Status group: OAPPEND
OCREAT
OEXCL
ONOCTTY
ONONBLOCK
0SYNC
OTRUNC

¢ You can specify up to 7 file-options.
¢ The file-options can be in any order.

¢ Code only one file-option from the access group. If you specify more than one file-option from
the access group, the system uses ORDWR as the access.

¢ Code any combination of file-options from the status group.
¢ Duplicate file-options are treated as one specification.

¢ Do not code null positions. For example, do not code PATHOPTS=(,file-option) or
PATHOPTS=(file-option,,file-option).

Subparameter Definition

Access Group
ORDONLY
Specifies that the program should open the file for reading.

OWRONLY
Specifies that the program should open the file for writing.

ORDWR
Specifies that the program should open the file for reading and writing. Do not
use this option for a FIFO special file.

Status Group

OAPPEND
Specifies that MVS sets the file offset to the end of the file before each write,
so that data is written at the end of the file.

OCREAT
Specifies that:

 If the file does not exist, the system is to create it. If a directory specified in
the pathname does not exist, one is not created, and the new file is not
created.

 If the file already exists and OEXCL was not specified, the system allows
the program to use the existing file.

Chapter 12. DD Statement 12-157

DD: PATHOPTS

 If the file already exists and OEXCL was specified, the system fails the
allocation and the job step.

OEXCL
Specifies that:

 If the file does not exist, the system is to create it.
* If the file already exists, the system fails the allocation and the job step.

The system ignores OEXCL if OCREAT is not also specified.

ONOCTTY
Specifies that if the PATH parameter identifies a terminal device, opening of the
file does not make the terminal device the controlling terminal for the process.

ONONBLOCK
Specifies the following, depending on the type of file:

e For a FIFO special file:

— With ONONBLOCK specified and ORDONLY access: An open()
function for reading-only returns without delay.

— With ONONBLOCK not specified and ORDONLY access: An open()
function for reading-only blocks (waits) until a process opens the file for
writing.

— With ONONBLOCK specified and OWRONLY access: An open()
function for writing-only returns an error if no process currently has the
file open for reading.

— With ONONBLOCK not specified and OWRONLY access: An open()
function for writing-only blocks (waits) until a process opens the file for
reading.

e For a character special file that supports nonblocking open:

— If ONONBLOCK is specified: An open() function returns without
blocking (waiting) until the device is ready or available. Device
response depends on the type of device.

— If ONONBLOCK is not specified: An open() function blocks (waits) until
the device is ready or available.

Specification of ONONBLOCK has no effect on other file types.

OSYNC
Specifies that the system is to move data from buffer storage to permanent
storage before returning control from a callable service that performs a write.

OTRUNC
Specifies that the system is to truncate the file length to zero if all the following
are true:

¢ The file specified on the PATH parameter exists.
e The file is a regular file.
e The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect on
FIFO special files or character special files.

12-158 0S/390 V2R10.0 MVS JCL Reference

Defaults

DD: PATHOPTS

If you do not code a value on the PATHOPTS parameter or if you do not code a
PATHOPTS on a DD statement with a PATH parameter, the system assumes that
the pathname exists, searches for it, and issues a message if the pathname does
not exist.

If the file exists and you specify PATHOPTS without a file-option for the access
group, the allocation succeeds. If the file does not exist and you specify
PATHOPTS without a file-option from the access group, the system fails to open
the file and issues a message.

Relationship to Other Parameters

Code the PATHOPTS parameter only on a DD statement that contains a PATH
parameter.

You can code the following parameters with the PATHOPTS parameter:

BLKSIZE
BUFNO
DSNTYPE
DUMMY
FILEDATA
LRECL
NCP

PATH
PATHMODE
PATHOPTS
RECFM
TERM

If:
* You specify either:
— OCREAT alone

or:
— Both OCREAT and OEXCL

on the PATHOPTS parameter,

And if:

¢ The file does not exist,

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
book assumes that the application passes the subparameters to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the values specified for PATHOPTS
and passes the values to the open() function. The application program can ignore
or modify the information specified in the JCL.

Chapter 12. DD Statement 12-159

DD: PROTECT

File Status
The MVS system uses the PATHOPTS parameter to determine the status for the
file, as follows:
e OLD status:

— PATHOPTS is not on the DD statement.
— PATHOPTS does not contain a file option.
— PATHOPTS does not contain OCREAT.

¢ MOD status: PATHOPTS contains OCREAT but not OEXCL.
¢ NEW status: PATHOPTS contains both OCREAT and OEXCL.

Note: The DISP parameter cannot appear on a DD statement containing the
PATH parameter.

Example of the PATHOPTS Parameter

//DD1 DD PATH='/usr/applics/pay.time',PATHDISP=(KEEP,DELETE),
/l PATHOPTS=(OWRONLY ,0CREAT,0EXCL) , PATHMODE= (SIRWXU,SIRGRP)

OCREAT in the PATHOPTS parameter specifies that the file named in the PATH
parameter be created. OWRONLY requests that the system open the file only for
writing. OEXCL specifies that, if the file already exists, the system will not create a
file and the job step will fail.

PROTECT Parameter

Parameter Type
Keyword, optional
Use the PROTECT parameter only if RACF is installed and active.

With SMS, use the SECMODEL parameter to protect data sets; SECMODEL is
described on page [12-174

Purpose

Use the PROTECT parameter to tell the OS/390 Security Server, which includes
RACEF, to protect:

* One data set on a direct access volume.
e One data set on a tape volume with one of the following types of labels:

— IBM standard labels, LABEL=(,SL) or LABEL=(,SUL)
— ISO/ANSI/FIPS Version 3 labels, LABEL=(,AL) or LABEL=(,AUL)
— Nonstandard labels, LABEL=(,NSL), if the installation provides support

* An entire tape volume with one of the following:

— IBM standard labels, LABEL=(,SL) or LABEL=(,SUL)

— ISO/ANSI/FIPS Version 3 labels, LABEL=(,AL) or LABEL=(,AUL)

— Nonstandard labels, LABEL=(,NSL), if the installation provides support
— No labels, LABEL=(,NL)

— Bypassed label processing, LABEL=(,BLP)

— Leading tapemarks, LABEL=(,LTM)

12-160 0S/390 V2R10.0 MVS JCL Reference

DD: PROTECT

References

For more information on RACF, see|0S/390 SecureWay Security Server RACH

Syntax

PROTECT= {YES}
{v 1

Subparameter Definition

YES
Requests RACF to protect a direct access data set, tape data set, or tape
volume. This parameter can also be coded as Y.

Overrides

With SMS, the DD SECMODEL parameter overrides the PROTECT=YES
parameter.

Relationship to Other Parameters
Do not code the following parameters with the PROTECT parameter.

* DLM QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
DATA FLASH ucs
DDNAME MODIFY

DSNAME Parameter for RACF-Protected Data Sets

RACF expects the data set name specified in the DSNAME parameter to have a
high-level qualifier that is defined to RACF. See the |0S/390 SecureWay Security
[Server RACF Security Administrator's Guide|for details.

Requirements for Protecting a Tape Data Set

A DD statement that contains a PROTECT parameter to establish RACF protection
for a tape data set must:

» Specify or imply VOLUME=PRIVATE.
e Specify or imply DISP=NEW, DISP=0LD, or DISP=SHR,; it must not specify or
imply DISP=MOD.
e Specify in the LABEL parameter a label type of:
— SL or SUL for IBM standard labels.
— AL or AUL for ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 tape labels.

— NSL for nonstandard labels. In this case, the NSL installation exit routine
must issue a RACDEF or RACROUTE TYPE=DEFINE macro instruction.
See |0S/390 SecureWay Security Server External Security Interface|
[(RACROUTE) Macro Referencd for a description of these macro

instructions.

Chapter 12. DD Statement 12-161

DD: PROTECT

» |f the data set is not the first on the volume, specify a
data-set-sequence-number in the LABEL parameter, which requires that the
RACF TAPEDSN option be active.

Requirements for Protecting a Tape Volume

A DD statement that contains a PROTECT parameter to establish RACF protection
for a tape volume must:

e Specify or imply VOLUME=PRIVATE.
e Specify or imply DISP=NEW.
e Specify in the LABEL parameter a label type of:
— SL or SUL for IBM standard labels.
— AL or AUL for ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 tape labels.

— NSL for nonstandard labels. In this case, the NSL installation exit routine
must issue a RACDEF or RACROUTE TYPE=DEFINE macro instruction.

— NL for no labels.
— BLP for bypass label processing.
— LTM for leading tapemark.
Note that RACF cannot fully protect unlabeled tapes because RACF cannot verify

the volume serial number directly; the operator must verify the volume serial
number when mounting the tape volume.

Requirements for Protecting a Direct Access Data Set

A DD statement that contains a PROTECT parameter to establish RACF protection
for a direct access data set must:

¢ Name a permanent data set in the DSNAME parameter.

e Specify a status of DISP=NEW or MOD treated as NEW. RACF can establish
protection only when the data set is being created.

Examples of the PROTECT Parameter
Example 1

//DASD DD DSNAME=USER37.MYDATA,DISP=(,CATLG),
// VOLUME=SER=333000,UNIT=3330,SPACE=(TRK,2) ,PROTECT=YES

This DD statement requests RACF protection for the new direct access data set
USER37.MYDATA.

Example 2
//TAPEVOL DD DSNAME=MHB1.TAPEDS,DISP=(NEW,KEEP),LABEL=(,NL),
!/ VOLUME=SER=T49850,UNIT=3400-5,PROTECT=YES

This DD statement requests RACF protection for tape volume T49850. Because a
specific tape volume is requested, it automatically has the PRIVATE attribute. The
volume has no labels.

Example 3

12-162 0S/390 V2R10.0 MVS JCL Reference

DD: QNAME

//TAPEDS DD DSNAME=INST7.NEWDS,DISP=(NEW,CATLG),LABEL=(2,SUL),
// VOLUME=SER=223344,UNIT=3400-5,PROTECT=YES

This DD statement requests RACF protection for INST7.NEWDS, which is the
second data set on tape volume 223344. Because a specific tape volume is
requested, it automatically has the PRIVATE attribute. The volume has IBM
standard and user labels; the RACF TAPEDSN option must be active.

QNAME Parameter

Parameter Type

Keyword, optional

Purpose

Use the QNAME parameter to indicate that this DD statement defines a data set of
telecommunications access method (TCAM) messages. The QNAME parameter
refers to a TPROCESS macro instruction that defines a destination queue for the
messages. Optionally, the QNAME parameter can also name a TCAM job to
process the messages.

References

For information about TCAM and the TPROCESS macro instruction, see
ACF/TCAM |Installation Reference.

Syntax

QNAME=procname[.tcamname]

Subparameter Definition

prochame
Identifies a TPROCESS macro instruction; procname must be identical to the
procname in the name field of the TPROCESS macro instruction.

tcamname
Names a TCAM job: tcamname must be identical to the jobname. The TCAM
job can be a task started by an operator START command.

Relationship to Other Parameters

The only DD parameters that you can code with the QNAME parameter are DCB,
LIKE, LRECL, RECFM, and REFDD. The only DCB subparameters that you can
code with the QNAME parameter are: BLKSIZE, BUFL, LRECL, OPTCD, and
RECFM.

Examples of the QNAME Parameter
Example 1

//DYD DD QNAME=FIRST,DCB=(RECFM=FB,LRECL=80,BLKSIZE=320)

This DD statement defines a data set of TCAM messages. FIRST is the name of
the TPROCESS macro instruction that specifies the destination queue to which the

Chapter 12. DD Statement 12-163

DD: RECFM

messages are routed. The DCB parameter supplies information not supplied in the
program’s DCB macro instruction for the data control block.

Example 2
//DXD DD QNAME=SECOND.TCAMO1

This DD statement defines a data set of TCAM messages. SECOND is the name of
the TPROCESS macro instruction that specifies the destination queue to which the
messages are routed. TCAM program TCAMO1 will process the messages.

RECFM Parameter

Parameter Type
Keyword, optional
Purpose

Use the RECFM parameter to specify the format and characteristics of the records
in a new data set. All the format and characteristics must be completely described
in one source, that is, in the data set label of an existing data set, in the DCB
macro, in the DD DCB parameter, or in the DD RECFM parameter. However, the
processing program can modify the RECFM field in the DCB.

Code the RECFM parameter when you want to (1) specify the record format for the
data set or (2) with SMS, override the record format defined in the data class of the
data set.

The syntax of the RECFM parameter is described in the following topics:

¢ Coding RECFM for BDAM Access Method
e Coding RECFM for BPAM Access Method
e Coding RECFM for BSAM, EXCP, and QSAM Access Methods
e Coding RECFM for QISAM Access Method
¢ Coding RECFM for TCAM Access Method

Coding RECFM for BDAM Access Method

Syntax: BDAM Access Method

RECFM= {u }
{v 1}
{vs }
{vBS}
{F }
{FT}
U indicates that the records are undefined length.
\ indicates that the records are variable length.
VS indicates that the records are variable length and spanned.

VBS indicates that the records are variable length, blocked, and spanned, and that the problem
program must block and segment the records.

F indicates that the records are fixed length.

T indicates that the records may be written using the track-overflow feature.

Default: undefined-length, unblocked records.

12-164 0S/390 V2R10.0 MVS JCL Reference

DD: RECFM

Coding RECFM for BPAM Access Method
Syntax: BPAM Access Method

RECFM=

A or M can be coded with any record format, such as: RECFM=FBA

A indicates that the records contain ISO/ANSI control characters.

B indicates that the records are blocked.

F indicates that the records are fixed length.

M indicates that the records contain machine code control characters.

T indicates that the records may be written using the track-overflow feature.
U indicates that the records are undefined length.

\ indicates that the records are variable length.

Default: U

Coding RECFM for BSAM, EXCP, and QSAM Access Methods
Syntax: BSAM, EXCP, and QSAM Access Methods

Chapter 12. DD Statement 12-165

DD: RECFM

RECFM=

{U 1 [A]
{ur)} M
{F 1}
{rB }
{Fs }
{FT }
{FBS }
{FBT }
v 1}
{vd }
{vs }
vt}
{vBS }
{VBT }
{vBST}

A or M can be coded with any record format, such as: RECFM=FBA

RECFM=

For BSAM, EXCP, and QSAM using ISO/ANSI/FIPS data sets on tape:

{D } [A]

A can be coded with any record format, such as: RECFM=FBA

WMo W>

c -

A or M cannot be specified if the PRTSP subparameter is specified.

indicates that the record contains ISO/ANSI device control characters.

indicates that the records are blocked.

indicates that the records are variable-length ISO/ANSI tape records.

indicates that the records are fixed length.

indicates that the records contain machine code control characters.

(1) For fixed-length records, indicates that the records are written as standard blocks, that
is, no truncated blocks or unfilled tracks within the data set, with the exception of the last
block or track. (2) For variable-length records, indicates that a record can span more than
one block.

indicates that the records can be written using the track-overflow feature, if required.
indicates that the records are undefined length. U is invalid for an ISO/ANSI/FIPS Version 3
tape data set.

indicates that the records are variable length. V cannot be specified for (1) a variable-length
ISO/ANSI tape data set (specify D for this data set), (2) a card reader data set, or (3) a
7-track tape unless the data conversion feature (TRTCH=C) is used.

Default: U

Coding RECFM for QISAM Access Method

Syntax: QISAM Access Method

RECFM=

{v}
{vB}
{F}
{FB}

B

B
F
\

indicates that the records are blocked.
indicates that the records are fixed length.
indicates that the records are variable length; variable records cannot be in ASCII.

When creating indexed sequential data sets, you can code the RECFM subparameter; when
processing existing indexed sequential data sets, you must omit RECFM.

Default: V

12-166 0S/390 V2R10.0 MVS JCL Reference

DD: RECORG

Coding RECFM for TCAM Access Method
Syntax: TCAM Access Method

RECFM=

indicates that the records are blocked.
indicates that the records are fixed length.
indicates that the records are undefined length.
indicates that the records are variable length.

Default: U

<CTw

Overrides

RECFM overrides the record format specified in the data set label, and with SMS,
RECFM overrides the record format defined in the DATACLAS parameter for the
data set. See[‘Overrides” on page 12-50|

Relationship to Other Parameters
Do not code the following DD parameters with the RECFM parameter.

* DDNAME
AMP DYNAM
DATA RECORG
DCB=DSORG

DCB=RECFM

Examples of the RECFM Parameter

Example 1

//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP) ,UNIT=3380,

// RECFM=FB,LRECL=326,SPACE=(23472,(200,40))

In the example, the record format of fixed block (FB) is used for the new data set
EVER.

Example 2

//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLAS06,DISP=(NEW,KEEP),

/l RECFM=FB

In the example, the record format of fixed block (FB) overrides the record format
defined in the data class for the data set.

RECORG Parameter

Parameter Type
Keyword, optional — use this parameter only with SMS
Without SMS, see the AMP parameter described on page [12-21

Purpose

Chapter 12. DD Statement 12-167

DD: RECORG

Syntax

Use the RECORG parameter to specify the organization of the records in a new
VSAM data set.

Code the RECORG parameter when you want to (1) specify the record organization
for the data set or (2) override the record organization defined in the data class of
the data set.

If SMS is not installed or is not active, the system syntax checks and then ignores
the RECORG parameter.

References

See [0S/390 DFSMS: Using Data Sets|for information on VSAM data sets.

RECORG=

Subparameter Definition

Defaults

Overrides

KS
Specifies a VSAM key-sequenced data set.

ES
Specifies a VSAM entry-sequenced data set.

RR
Specifies a VSAM relative record data set.

LS
Specifies a VSAM linear space data set.

If you do not specify RECORG, SMS assumes a physical sequential (PS) or
partitioned (PO) data set.

The RECORG parameter overrides the record organization defined in the
DATACLAS parameter for the data set. See [‘Overrides” on page 12-50

Relationship to Other Parameters

Do not code the following DD parameters with the RECORG parameter.

* DDNAME
DATA DSNTYPE
DCB=DSORG DYNAM
DCB=RECFM RECFM

12-168 0S/390 V2R10.0 MVS JCL Reference

DD: REFDD

Example of the RECORG parameter

//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
// RECORG=KS

In the example, the record organization of key-sequenced (KS) overrides the record
organization defined in the data class.

REFDD Parameter

Parameter Type
Keyword, optional — use this parameter only with SMS

Without SMS, use the DCB=".ddname form of the DCB parameter described on
page

Purpose

Use the REFDD parameter to specify attributes for a new data set by copying
attributes of a data set defined on an earlier DD statement in the same job.

The following attributes are copied to the new data set from (1) the attributes
specified on the referenced DD statement, and (2) for attributes not specified on the
referenced DD statement, from the data class of the data set specified by the
referenced DD statement:

e Data set organization
— Record organization (RECORG) or
— Record format (RECFM)

* Record length (LRECL)

e Key length (KEYLEN)

» Key offset (KEYOFF)

e Type, PDS or PDSE (DSNTYPE)

e Space allocation (AVGREC and SPACE)

Only RECFM and LRECL apply to tape data sets.

REFDD does not copy DCB attributes from the data set label. See the DD LIKE
parameter.

If SMS is not installed or is not active, the system checks the syntax and then
ignores the REFDD parameter.

The retention period (RETPD) or expiration date (EXPDT) is not copied to the new
data set.

Note: Do not use the REFDD parameter to copy attributes from a temporary data
set (&&dsname), partitioned data set if a member name is included, and
relative generation number for a GDG.

Chapter 12. DD Statement 12-169

DD: REFDD

Syntax

{*.ddname }

REFDD= {*.stepname.ddname

{*.stepname.procstepname.ddname}

Subparameter Definition

Overrides

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

Specify a backward reference to an earlier DD statement. The referenced DD
statement cannot name a cataloged data set or refer to another DD statement.

*.ddname
Specifies the ddname of an earlier DD statement in the same step.

*.stepname.ddname
Specifies the ddname of a DD statement in an earlier step, stepname, in
the same job.

*.stepname.procstepname.ddname
Specifies the ddname of a DD statement in a cataloged or in-stream
procedure called by an earlier job step. Stepname is the name of the job
step that calls the procedure and procstepname is the name of the
procedure step that contains the DD statement.

Do not reference a DD * or a DD DATA statement.

Any attributes specified on the referenced DD statement override the corresponding
data class attributes of the referenced data set.

Any attributes you specify on the referencing DD statement with the following
parameters override the corresponding attributes obtained from the referenced DD
statement and the data class attributes of the referenced data set.

RECORG (record organization) or RECFM (record format)

LRECL (record length)

KEYLEN (key length)

KEYOFF (key offset)

DSNTYPE (type, PDS or PDSE)

AVGREC (record request and space quantity)

SPACE (average record length, primary, secondary, and directory quantity)

Relationship to Other Parameters

Do not code the following DD parameters with the REFDD parameter.

DYNAM

12-170 0S/390 V2R10.0 MVS JCL Reference

DD: RETPD

Examples of the REFDD Parameter

Example 1

//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLASO1,DISP=(NEW,KEEP),
/l LRECL=512,RECFM=FB
//SMSDS7 DD DSNAME=MYDS7.PGM,REFDD=*.SMSDS6,DISP=(NEW,KEEP)

In the example, the data set attributes used for MYDS7.PGM are obtained from the
referenced data set MYDS6.PGM.

Example 2

//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLASO1,DISP=(NEW,KEEP),
/l LRECL=512,RECFM=FB

//SMSDS8 DD DSNAME=MYDS8.PGM,REFDD=*.SMSDS6,DISP=(NEW,KEEP),
/l LRECL=1024

In the example, the data set attributes used for MYDS8.PGM are obtained from the
referenced data set MYDS6.PGM. Also, the logical record length of 1024 overrides
the logical record length obtained from the referenced data set.

RETPD Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the RETPD parameter to specify the retention period for a new data set to help
reduce the chance of later accidental deletion. After the retention period, the data
set can be deleted or written over by another data set.

Note: You cannot use the RETPD parameter to change the expiration date of an
existing SMS data set.

If the DD statement contains DISP=(NEW,DELETE) or the DISP parameter is
omitted to default to NEW and DELETE, the system deletes the data set when the
step terminates normally or abnormally, even though a retention period is also
specified.

Do not specify RETPD for a temporary data set.
The RETPD parameter achieves the same result as the EXPDT parameter.
Code the RETPD parameter when you want to (1) specify a retention period for the

data set or (2) with SMS, override the retention period defined in the data class for
the data set.

RETPD=nnnn

e The RETPD parameter can have a null value only when coded on a DD which either:

— Overrides a DD in a procedure
— Is added to a procedure.

Chapter 12. DD Statement 12-171

DD: RETPD

Subparameter Definition

Overrides

nnnn
Specifies the retention period, in days, for the data set. The nnnn is one
through four decimal digits (0 - 9999).

The system adds nnnn to the current date to produce an expiration date. The
calculated expiration date uses 365-day years and 366-day leap years.

Note: If you code RETPD and the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

With SMS, RETPD overrides the retention period defined in the DATACLAS
parameter for the data set. See [‘Overrides” on page 12-50|

With SMS, both the retention period specified on RETPD and defined in the data
class for an SMS-managed data set can be limited by a maximum retention period
defined in the management class for the data set.

Relationship to Other Parameters

Do not code the following DD parameters with the RETPD parameter.

* DYNAM
DATA EXPDT
DDNAME SYSOUT

Deleting a Data Set Before its Retention Period Passes

To delete a data set before the retention period has passed, use one of the
following:

» For data sets cataloged in an integrated catalog facility catalog, use the

DELETE command, as described in |0S/390 DFSMS Access Method Services

for Catalogd.

» For data sets not cataloged in an integrated catalog facility catalog, use the
IEHPROGM utility, as described in|0S/390 DFSMSdfp Utilities,

e For a non-VSAM data set, use the SCRATCH macro with the OVRD
parameter, as described in|0S/390 DFSMSdfp Advanced Services,

e The system operator can reply "u" to the IEC507D message prompt to delete
unexpired data sets.

* You can override the retention period for SMS-managed DASD data sets by
specifying OVRD_EXPDT(YES) in the IGDSMSxx SYS1.PARMLIB member and
specifying DELETE on the DD DISP statement. The data set will be deleted
whether or not the retention period has passed. See [0S/390 MVS Initialization
land Tuning Referencd for information about the IGDSMSxx parmlib member.

Examples of the RETPD Parameter

Example 1
//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL) ,RETPD=188

In the example, the data set is not eligible for being deleted or written over for 188
days.

12-172 0S/390 V2R10.0 MVS JCL Reference

DD: RLS

Example 2

//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// RETPD=732

In the example, the retention period of 732 days overrides the retention period
defined in the data class for the data set.

RLS Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

You can, on a system that includes MVS/DFSMS Version 1 Release 3 or higher,
use the RLS parameter to specify the level of record sharing, or sharing protocol,
for a VSAM data set containing records that must be shared. See[0S5/390 DFSMS]
[Using Data Setd for a description of the sharing protocols and to determine whether
your application can run in a shared data environment without modification.

Note: RLS is most useful for an existing application. For a new or heavily-modified
application, you can request record-level sharing in application code and do
not need to specify RLS on the DD statement.

RLS= {NRI}

—_—
o
=

—

Subparameter Definition

NRI
Specifies "no read integrity" (NRI). The application can read all records. Use
this subparameter if the application can read uncommitted changes made to a
data set by another application. NRI provides better performance than the CR
subparameter because it avoids the overhead of obtaining a lock when reading
a record from the data set.

CR

Specifies "consistent read" (CR). This subparameter requests VSAM to obtain a
SHARE lock on each record the application reads. This ensures the application
will not read uncommitted changes made to a data set by another application.
VSAM obtains the lock while processing a GET NUP request, and releases the
lock before completing the GET request. An application that processes a data
set allocated with RLS=CR may require modification if it tries to read changes
to the data set.

Chapter 12. DD Statement 12-173

DD: SECMODEL

Overrides

Specifying RLS does not override any other JCL parameter. See |[0S/390 DFSMS)
|Using Data Setd for a description of how to override the RLS value specified in the
JCL.

Relationship to Other Parameters
Do not code the following DD parameters with the RLS parameter:

*

AMP DSNTYPE PATHDISP
BURST DYNAM QNAME
CHARS FLASH SEGMENT
COPIES MODIFY SPIN
DATA OUTPUT SYsouT
DCB (see Note) PATH TERM
DDNAME PATHOPTS ucs

DLM PATHMODE

Note: You can code RLS with DCB as long as the only DCB subparameters you
specify are KEYLEN and LRECL.

Examples of the RLS Parameter
Example 1

/l EXEC PGM=BATCHPRG
//DD1 DD DSN=A,RLS=NRI,DISP=SHR

When the program BATCHPRG opens DD1, the data set is to be processed as a
shared resource. NRI specifies that an application can read uncommitted changes
made by other applications.

Example 2

// EXEC PGM=BATCHPRG
//DD2 DD DSN=B,RLS=CR,DISP=SHR

When the program BATCHPRG opens DD2, the data set is to be processed as a
shared resource. CR specifies that an application can read only committed changes
made by other applications.

SECMODEL Parameter

Parameter Type

Keyword, optional — use this parameter only with SMS

Without SMS, use the DD PROTECT parameter described on page [12-160|
Purpose

Use the SECMODEL parameter to specify the name of an existing RACF data set

profile that is copied to the discrete data set profile that RACF builds for the new
data set.

12-174 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: SECMODEL

The following information from the RACF data set profile, which RACF uses to
control access to the data set, is copied to the discrete data set profile of the new
data set:

e OWNER - indicates the user or group assigned as the owner of the data set
profile.

* |D - indicates the access list of users or groups authorized to access the data
set.

¢ UACC - indicates the universal access authority associated with the data set.
e AUDIT/GLOBALAUDIT - indicates which access attempts are logged.

e ERASE - indicates that the data set is to be erased when it is deleted
(scratched).

e LEVEL - indicates the installation-defined level indicator.
e DATA - indicates installation-defined information.

¢ WARNING - indicates that an unauthorized access causes RACF to issue a
warning message but allow access to the data set.

e SECLEVEL - indicates the name of an installation-defined security level.

Use the SECMODEL parameter (1) when you want a different RACF data set
profile than the default profile selected by RACF or (2) when there is no default
profile.

If SMS is not installed or is not active, the system syntax checks and then ignores
the SECMODEL parameter.

References

For information about RACF, see |0S/390 SecureWay Security Server RACH
[Command Language Referencd.

SECMODEL=(profile-name[,GENERIC])

Subparameter Definition

profile-name
Specifies the name of a RACF model profile, discrete data set profile, or
generic data set profile. The named profile is copied to the discrete data set
profile of the new data set.

If a generic data set profile is named, GENERIC must also be coded.

GENERIC
Identifies that the profile-name refers to a generic data set profile.

Chapter 12. DD Statement 12-175

DD: SEGMENT

Overrides
The SECMODEL parameter overrides the PROTECT=YES parameter.

Relationship to Other Parameters
Do not code the following DD parameters with the SECMODEL parameter.

* DDNAME
DATA DYNAM

Examples of the SECMODEL Parameter

Example 1
//SMSDS4 DD DSNAME=MYDS4.PGM,SECMODEL=(GROUP4.DEPT1.DATA),
/l DISP=(NEW,KEEP)

In the example, RACF uses the previously defined model data set profile named
GROUP4.DEPT1.DATA to control access to the new data set.

Example 2
//SMSDS5 DD DSNAME=MYDS5.PGM, SECMODEL=(GROUP5.*,GENERIC) ,
// DISP=(NEW,KEEP)

In the example, RACF uses the previously defined generic data set profile named
GROUPS5.* to control access to the new data set.

SEGMENT Parameter

Parameter Type
Keyword, optional
Purpose

In a JES2 system, use the SEGMENT parameter to allow part of a job’s output to
be printed while the job is still executing, or to allow multiple segments of a job’s
output to be printed simultaneously on multiple printers. With SEGMENT, portions
of a data set are spun, one segment at a time. You determine the size of the
portion with the SEGMENT parameter. SEGMENT allows you to specify the
number of pages produced for a sysout data set before the system processes the
segment of the data set. To count pages, JES2 uses the carriage control
characters in the data that skip to channel 1.

SEGMENT is supported by JES2 only. The SEGMENT parameter applies only to
line mode data sets with RECFM=A or RECFM=M.

Syntax

SEGMENT=page-count

12-176 0S/390 V2R10.0 MVS JCL Reference

DD: SPACE

Subparameter Definition
page-count
Indicates the number of pages produced for the sysout data set for the current
segment. When the number is reached, the system spins-off the data segment
for output processing.

Overrides
The system spins the sysout regardless of SPIN, FREE, and OUTDISP
specifications.

Relationship to Other Parameters
Do not code the following parameters with the SEGMENT parameter.

* DDNAME EXPDT QNAME
AMP DISP LABEL RETPD
CHKPT DSNAME LIKE SUBSYS
DATA DYNAM PROTECT VOLUME

Page mode data is not counted for segmentation.

The system might suspend segmentation if it reaches the threshold for
segmentation allowed by JES.

Example of the Segment Parameter
//DD1 DD SYSOUT=A,SEGMENT=100

In this example, if the sysout data set produced 400 pages, then four separate
segments, 100 pages in each, are produced for output processing.

SPACE Parameter

Parameter Type

Keyword, optional
Note: With SMS, code the SPACE parameter when you want to
¢ Request space for a new data set, or

e Override the space allocation defined in the DATACLAS parameter for
the data set.

See the DATACLAS parameter (described on page|12-48) and the
AVGREC parameter (described on page|12-29).
Purpose
Use the SPACE parameter to request space for a new data set on a direct access
volume. You can request space in two ways:

e Tell the system how much space you want and let the system assign specific
tracks.

» Tell the system the specific tracks to be allocated to the data set.

Chapter 12. DD Statement 12-177

DD: SPACE

Syntax

Letting the system assign the specific tracks is most frequently used. You specify
only how space is to be measured — in tracks, cylinders, blocks, or records — and
how many of those tracks, cylinders, blocks, or records are required.

The SPACE parameter has no meaning for tape volumes; however, if you assign a
data set to a device class that contains both direct access devices and tape
devices, for example, UNIT=SYSSQ, you should code the SPACE parameter.

If you code the SPACE parameter on a DD statement that defines an existing data
set, the SPACE value you specify temporarily overrides the SPACE value used to
create the data set. For example, a data set created with SPACE=(CYL,(5,1))
causes 5 cylinders to be allocated to the data set, and, if it needs more space, it
can obtain 1 additional cylinder.

Suppose, though, that there is one particular job that specifies DISP=MOD and will
write many records to this data set. JCL for this job can define, for example,
SPACE=(CYL,(5,10)) to obtain an additional 10 cylinders instead of just 1 cylinder.
The override, however, is in effect only for this job. Any other job that requires a
secondary extent and does not have a SPACE parameter override gets just the 1
additional cylinder specified in the JCL that created the job.

Notes

e When creating VSAM data sets, be aware that there is no direct one-to-one
correspondence between ‘define cluster’ parameters and JCL keywords.

e The average value in the SPACE keyword is meant to be an average block
length value for space calculations and is not meant to represent an LRECL
value.

e The AVGREC keyword is only to be used as a multiplier in determining how
much space is to be allocated.

* When defining VIO data sets, be aware that a SPACE parameter in the JCL or
the SPACE value defined for a data class will override the system default
space value.

¢ The size of a data set is limited to 65,536 tracks per volume except for the
following types of data sets:

Hierarchical File System (HFS)

Extended format sequential
Partitioned data set extended (PDSE)
VSAM

12-178 0S/390 V2R10.0 MVS JCL Reference

DD: SPACE

For system assignment of space:
SPACE= ({TRK,}(primary-qty[,second-qty][,directory])[,RLSE][,CONTIG][,ROUND])

({cYL,} [, 1[,index 110, 10,MX16]
({bTk1gth,} [LALX 1]
({reclgth,} [,]

To request specific tracks:

SPACE= (ABSTR, (primary-qty,address [,directory])
[,index]

To request only directory space:
SPACE=(, (,,directory))

¢ You can omit the parentheses around the primary quantity if you do not code secondary,
directory, or index quantities. For example,

SPACE=(TRK,20,RLSE,CONTIG) or
SPACE=(TRK,20) .

Note that, if you omit these inner parentheses, you also omit the commas within them.

¢ All the subparameters are positional. Code a comma to indicate an omitted subparameter if any
others follow. Thus:

— If you code primary and directory or index quantities and omit a secondary quantity, code a
comma inside the inner parentheses to indicate the omission. For example,
SPACE=(TRK,(20,,2)).

— If you omit RLSE but code a following subparameter, code a comma to indicate the
omission. For example, SPACE=(TRK,(20,10),,CONTIG) or SPACE=(TRK,20,,CONTIG).

— If you omit CONTIG, MXIG, or ALX and ROUND follows, code a comma to indicate the
omission. For example, SPACE=(400,30,RLSE,,ROUND). If RLSE is also omitted, this
example becomes SPACE=(400,30,,,ROUND).

Subparameter Definition

System Assignment of Space
TRK
Requests that space be allocated in tracks.

CYL
Requests that space be allocated in cylinders.

blkigth — (only if AVGREC is not coded)
Specifies the average block length, in bytes, of the data. The blkigth is a
decimal number from 0 through 65535. This parameter indicates that the values
specified for primary-qty and second-qgty are block quantities, and directs the
system to compute the number of tracks to allocate using a block length. The
value specified for block size uses block length in this computation, with the
exception of the value zero. See primary-qty and second-qty descriptions for
how a zero block size is handled.

reclgth — (only if AVGREC is coded and SMS is active)
With SMS, specifies the average record length, in bytes, of the data. The
reclgth is a decimal number from 0 through 65535. This parameter indicates
that the values specified for primary-qty and second-qty are record quantities,
whose average record length is reclgth. If zero is specified, no space will be
allocated.

The system allocates DASD space in whole tracks. The number of tracks
required depends on how the records are blocked. The system uses one of the

Chapter 12. DD Statement 12-179

DD: SPACE

following as the block length to compute the number of tracks to allocate, in the
order indicated:

1. The block size from the DCB parameter, if specified
2. The system determined block size, if available
3. A default value of 4096.

primary-qty
Specifies one of the following:

¢ For TRK, the number of tracks to be allocated.
e For CYL, the number of cylinders to be allocated.
* For a block length, the number of data blocks in the data set.

* For a record length, the number of records in the new data set. Use the
AVGREC parameter to specify that the primary quantity represents units,
thousands, or millions of records.

Note: When you specify TRK or CYL for a partitioned data set (PDS or
PDSE), the primary quantity includes the space for the directory. When
you specify a block length or record length for a partitioned data set
(PDS or PDSE), the primary quantity does not include the directory
space; the system assigns the directory to space outside the primary
space assignment.

One volume must have enough available space for the primary quantity. If you
request a particular volume and it does not have enough space available for
your request, the system terminates the job step.

If a blklgth of zero is specified for the first subparameter, the system uses one
of the following as the block length to compute the number of tracks to allocate,
in the order indicated:

1. The block size from the DCB parameter, if specified
2. The system determined block size, if available
3. A default value of 4096.

To request an entire volume, specify in the primary quantity the number of
tracks or cylinders on the volume minus the number used by the volume table
of contents (VTOC), volume label track, VTOC index, and VVDS (if any). The
volume must not contain other data sets.

second-qty
Specifies the number of additional tracks, cylinders, blocks, or records to be
allocated, if more space is needed. The system does not allocate additional
space until it is needed.

With SMS, use the AVGREC parameter to specify that the secondary quantity
represents units, thousands, or millions of records. The system computes the

number of tracks to allocate using a block length as indicated in the following

order:

1. The block size from the DCB parameter, if specified
2. The system determined block size, if available
3. A default value of 4096.

12-180 0S/390 V2R10.0 MVS JCL Reference

DD: SPACE

If the first subparameter specifies the average block length, the system
computes the number of tracks for the secondary quantity from the second-qty
number and one of the following, in order:

1. The blkigth subparameter of the SPACE parameter.

2. The saved average block length value specified when the data set was
created, if no SPACE parameter was specified for an existing data set.

3. The block length in the BLKSIZE field of the data control block.

When you specify a secondary quantity and the data set requires additional
space, the system allocates the specified quantity:

1. In contiguous tracks or cylinders, if available.
2. If not, in up to five extents.

The system can allocate up to 123 extents for a data set on a volume. An
extent is space that may or may not be contiguous to other space allocated to
the data set. The extents for a data set include the primary quantity space and
user-label space.

Note: BDAM data sets cannot be extended.

When your program has filled a sequential data set’s allocated space on a
volume, the system determines where the following data is written as follows:

* If the disposition of the data set is NEW or MOD and the limit on the
number of extents on a volume has not been reached, the system attempts
to allocate the secondary quantity on the same volume.

¢ |f the disposition of the data set is OLD or SHR, the system examines the
next volume specified for the data set.

— If space has been allocated on the next volume for the data set, the
next volume is used for the data set.

— If space has not been allocated on the next volume for the data set,
secondary space is allocated on the next volume for the data set.

If there is not another volume specified for the data set, the system
attempts to allocate the secondary quantity on the current volume.

Note that your program should not write with a disposition of DISP=SHR
unless you take precautions to prevent other programs from writing at the
same time.

If the requested volumes have no more available space and if at least one
volume is demountable, the system asks the operator to mount scratch
(nonspecific) volumes until the secondary allocation is complete. If none of the
volumes are demountable, the system abnormally terminates the job step.

directory
Specifies the number of 256-byte records needed in the directory of a
partitioned data set (PDS).

Note: When creating a partitioned data set (PDS), you must request space for
a directory. When creating a partitioned data set extended (PDSE), the
size of the directory grows dynamically as needed. SMS uses the size
requested for a PDSE directory only if you later convert the PDSE to a
PDS.

Chapter 12. DD Statement 12-181

DD: SPACE

The PDS directory must fit in the first extent of the data set. If the primary
quantity is too small for the directory, or if the system has allocated the primary
quantity over multiple extents and the first extent is too small for the directory,
then the allocation fails.

With SMS, you can specify the number of directory records on the SPACE
parameter without specifying any other subparameters. For example:

//DD12 DD DSNAME=PDS.EXMP,DATACLAS=DCLAS12,SPACE=(,(,,20)),
// DISP=(NEW,KEEP)

specifies 20 directory records for the data set. In this example, the number of
specified directory records (20) overrides the number of directory records
defined in the data class of the data set. (SMS uses all other space allocation
attributes defined in the data class of the data set.)

index

For the index of an indexed sequential data set, specifies one of the following:

e For TRK, the number of tracks needed. The number of tracks must equal
one or more cylinders.

e For CYL, the number of cylinders needed.

RLSE (Partial Release)

Requests that space allocated to an output data set, but not used, is to be
released when the data set is closed. This partial release parameter causes
allocation to release unused space only if the data set is open for output and
the last operation was a write.

For a multi-volume sequential data set, only unused space on the current
volume is released when the data set is closed; allocated space on any
subsequent volume is not affected.

If you specify RLSE and an abnormal termination occurs, the system does not
release unused space even though the data set is open.

Do not code the RLSE subparameter for an indexed sequential data set.

Coding RLSE for primary allocation does not prohibit use of secondary
allocation. The secondary request for space is still in effect.

The system ignores a request to release unused space when closing a data set
if it cannot immediately obtain exclusive control of the data set. Circumstances
that would preclude obtaining exclusive control include:

* Another job is sharing the data set.

e Another task in the same multitasking job is processing an OPEN, CLOSE,
EOQV, or FEOV request for the data set.

* Another data control block is open for the data set.

The RLSE subparameter is ignored when TYPE=T is coded in the CLOSE
macro instruction.

When coding RLSE for an existing data set, code the unit of measurement and
primary quantity as they appeared in the original request. For example, if the
original request was:

SPACE=(TRK, (100,50))

you can release unused tracks when you retrieve the data set by coding:

12-182 0S/390 V2R10.0 MVS JCL Reference

DD: SPACE

SPACE=(TRK, (100) ,RLSE)

CONTIG
Requests that space allocated to the data set must be contiguous. This
subparameter affects only primary space allocation.

If CONTIG is specified and contiguous space is not available, the system
terminates the job step.

MXIG
Requests that space allocated to the data set must be (1) the largest area of
available contiguous space on the volume and (2) equal to or greater than the
primary quantity. This subparameter affects only primary space allocation.

Caution: IBM recommends that you use extreme care when coding this
parameter. Large amounts of storage could be allocated, depending on how
much free space is available at the time the request is made. If you code this
parameter, IBM recommends that you also code the RLSE parameter to
release any unused space.

Note: Do not code a MXIG subparameter for an indexed sequential data set.

ALX
Requests that space allocated to the data set is to be up to 5 of the largest
areas of available contiguous space on the volume, and each area must be
equal to or greater than the primary quantity. The system allocates fewer than
5 areas only when 5 areas of sufficient size are not available. ALX affects only
primary space allocation.

For example, assume the following space extents (in tracks) are available: 910,
435, 201, 102, 14, 12, and 8.

If your job requests 14 tracks as its primary allocation, and ALX is in effect, the
job receives the following 5 extents: 910, 435, 201, 102, and 14.

However, if the job requests 15 tracks as its primary allocation, it would receive
4 extents: 910, 435, 201, and 102. The job does not receive the 14-track extent
because it is less than the primary space allocation.

Caution: IBM recommends that you use extreme care when coding this
parameter. Large amounts of storage could be allocated, depending on how
much free space is available at the time the request is made. If you code this
parameter, IBM recommends that you also code the RLSE parameter to
release any unused space.

Note: Do not code an ALX subparameter for an indexed sequential data set.

ROUND
When the first subparameter specifies the average block length, requests that
space allocated to the data set must be equal to an integral number of
cylinders. If the first subparameter specifies TRK, or CYL, the system ignores
ROUND.

Chapter 12. DD Statement 12-183

DD: SPACE

Overrides

Request for Specific Tracks
For an SMS-managed data set (one with an assigned storage class), do not code
ABSTR.

ABSTR
Requests that the data set be allocated at the specified location on the volume.

primary-qty
Specifies the number of tracks to be allocated to the data set.

The volume must have enough available space for the primary quantity. If it
does not, the system terminates the job step.

address
Specifies the track number of the first track to be allocated. Count the first track
of the first cylinder on the volume as 0. Count through the tracks on each
cylinder until you reach the track on which you want the data set to start.

address
Specifies the track number of the first track to be allocated. Count the first
track of the first cylinder on the volume as 0. Count through the tracks on
each cylinder until you reach the track on which you want the data set to
start. The absolute track address must be a decimal number equal to or
less than 65535.

Note: Do not request track 0.

directory
Specifies the number of 256-byte records needed in the directory of a
partitioned data set.

Note: When creating a partitioned data set, you must request space for a
directory.

index
Specifies the number of tracks needed for the index of an indexed sequential
data set. The number of tracks must equal one or more cylinders.

With SMS, the SPACE parameter overrides the space allocation attributes defined
in the data class for the data set.

Explicit specification of SPACE on the DD statement overrides both the SPACE
and the AVGREC values specified in the data class.

Relationship to Other Parameters

Do not code the following parameters with the SPACE parameter.

* DYNAM
DATA QNAME
DDNAME SUBSYS

With KEYLEN for Block Requests

If space is requested in blocks and the blocks have keys, code the DD parameter
KEYLEN (or the DCB subparameter KEYLEN) on the DD statement and specify the
key length.

12-184 0S/390 V2R10.0 MVS JCL Reference

DD: SPACE

SPACE for New Data Sets with SMS

With SMS, code the SPACE parameter with or without the AVGREC parameter
when you want to (1) request space for the data set or (2) override the space
allocation attributes defined in the data class for the data set.

Examples of the SPACE Parameter
Example 1

//DD1 DD DSNAME=8&TEMP,UNIT=MIXED,SPACE=(CYL,10)

The DD statement defines a temporary data set. The UNIT parameter requests any
available tape or direct access volume; MIXED is the installation’s name for a group
of tape and direct access devices. If a tape volume is assigned, the SPACE
parameter is ignored; if a direct access volume is assigned, the SPACE parameter
is used to allocate space to the data set. The SPACE parameter specifies only the
required subparameters: the type of allocation and a primary quantity. It requests
that the system allocate 10 cylinders.

Example 2
//DD2 DD DSNAME=PDS12,DISP=(,KEEP),UNIT=3350,
// VOLUME=SER=25143,SPACE=(CYL,(10,,10),,CONTIG)

The DD statement defines a new partitioned data set. The system allocates 10
cylinders to the data set, of which ten 256-byte records are for a directory. Since
the CONTIG subparameter is coded, the system allocates 10 contiguous cylinders
on the volume.

Example 3

//REQUEST1 DD DSNAME=EXM,DISP=NEW,UNIT=3330,VOLUME=SER=606674,
// SPACE=(1024,75) ,DCB=KEYLEN=8

//REQUESTA DD DSNAME=EXQ,DISP=NEW,UNIT=3380,

// SPACE=(1024,75) ,DCB=KEYLEN=8

These DD statements request space in block lengths. The average block length of
the data is 1024 bytes. 75 blocks of data are expected as output. Each block is
preceded by a key eight bytes long. The system computes how many tracks are
needed, depending on the device requested in the UNIT parameter.

Example 4

//REQUEST2 DD DSNAME=PET,DISP=NEW,UNIT=3330,VOLUME=SER=606674,
/l SPACE=(ABSTR, (5,1))

In this example, the SPACE parameter asks the system to allocate 5 tracks,
beginning on the second track of the volume.

Example 5
//DD3 DD DSNAME=MULTIVOL,UNIT=3350,DISP=(,CATLG),
/l VOLUME=SER=(223344,223345) ,SPACE=(CYL, (554,554))

This example shows how to create a multivolume data set on two complete
volumes. The two volumes do not contain other data sets. A volume on 3350 Direct
Access Storage contains 555 cylinders. The unrequested cylinder contains the
volume table of contents (VTOC).

Chapter 12. DD Statement 12-185

DD: SPIN

Example 6
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=DCLAS03,DISP=(NEW,KEEP),
// SPACE=(128,(5,2)) ,AVGREC=K

In this example, the space allocation defined in the DCLASO03 data class is
overridden by the SPACE and AVGREC parameters, which indicate an average
record length of 128 bytes, a primary quantity of 5K (5,120) records, and a
secondary quantity of 2K (2,048) records.

SPIN Parameter

Syntax

Parameter type
Keyword, optional
Purpose

Use the SPIN parameter to specify that the output for the sysout data set is to be
made available for processing

e Immediately upon unallocation
* At the end of the job.

SPIN= {UNALLOC}
{NO }

Subparameter Definition

Defaults

UNALLOC
Indicates that the system makes the data set available for processing
immediately when the data set is unallocated. If you dynamically unallocate the
sysout data set, either explicitly or by specifying FREE=CLOSE, the system
makes the data set available for processing immediately. If you do not
dynamically unallocate it, the sysout data set is unallocated at the end of the
step, and the system will make it available for processing then.

NO
Indicates that the system makes the sysout data set available for processing as
a part of the output at the end of the job, regardless of when the data set is
unallocated.

If you dynamically unallocate the sysout data set, the default is that the data set is
immediately available for processing. If you unallocate the sysout data set at the
end of the step, the default is that the data set is available for processing. at the
end of the job.

If you specify FREE=CLOSE, the following defaults apply:

* A data set that is closed by the application program is available for processing
immediately.

12-186 0S/390 V2R10.0 MVS JCL Reference

Overrides

DD: SPIN

* A data set that is closed as part of the end-of-step cleanup, such as for a
program abend, is available for processing at the end of the job.

If you specify FREE=END, the default is that the data set is available for
processing at the end of the job.

The SEGMENT parameter overrides the SPIN parameter.

Note: Another way for a program to control when the sysout data set becomes
available for processing is to issue a SETPRT macro. For more information,
see |0S/390 DFSMS Macro Instructions for Data Sets

Relationship to Other Parameters

Do not code the following parameters with the SPIN parameter.

* DDNAME LABEL RETPD
AMP DISP LIKE SUBSYS
CHKPT DYNAM PROTECT VOLUME
DATA EXPDT QNAME

Examples of the SPIN Parameter

Example 1
//DD1 DD SYSOUT=A,FREE=CLOSE,SPIN=UNALLOC

In this example, if you explicitly close or dynamically unallocate the sysout data set,
the system makes it available for printing immediately. If you do not explicitly close
or dynamically unallocate the sysout data set, the system makes it available for
printing at the end of the step.

Example 2
//DD2 DD SYSOUT=A,FREE=CLOSE,SPIN=NO

In this example, the system makes the sysout data set available for printing at the
end of the job, regardless of when it is unallocated or closed.

Example 3

//DD3 DD SYSOUT=A,FREE=END,SPIN=UNALLOC

In this example, the sysout data set is unallocated at the end of the step, and made
available for printing then. If you dynamically unallocate the sysout data set, the
system makes it available for printing immediately.

Example 4
//DD4 DD SYSOUT=A,FREE=END,SPIN=NO

In this example, the system makes the sysout data set available for printing at the
end of the job, regardless of whether the data set is unallocated or closed.

Chapter 12. DD Statement 12-187

DD: STORCLAS

STORCLAS Parameter

Parameter Type

Keyword, optional — use this parameter only with SMS and for SMS-managed data
sets

Without SMS or for non-SMS-managed data sets, use the UNIT parameter
(described on page [12-202) and the VOLUME parameter (described on page
12-209).

Purpose

Use the STORCLAS parameter to specify a storage class for a new SMS-managed
data set. The storage administrator at your installation defines the names of the
storage classes you can code on the STORCLAS parameter.

The storage class contains the attributes that identify a storage service level to be
used by SMS for storage of the data set. It replaces the storage attributes that are
specified on the UNIT and VOLUME parameters for non-SMS-managed data sets.
An SMS-managed data set is defined as a data set that has a storage class

assigned. A storage class is assigned when either (1) you specify the STORCLAS

parameter or (2) an installation-written automatic class selection (ACS) routine
selects a storage class for a new data set.

If SMS is not installed or is not active, the system syntax checks and then ignores
the STORCLAS parameter.

SMS ignores the STORCLAS parameter if you specify it for an existing data set.
The use of a storage class can be protected by RACF.

References

See|0S/390 DFSMS: Using the Interactive Storage Management Facility for
information on how to use ISMF to view your installation-defined storage classes.

Syntax

STORCLAS=storage-class-name

Subparameter Definition

storage-class-name
Specifies the name of a storage class to be used for storage of the data set.

The name, one to eight characters, is defined by the storage administrator at
your installation.

12-188 0S/390 V2R10.0 MVS JCL Reference

Defaults

Overrides

DD: STORCLAS

If you do not specify STORCLAS for a new data set and the storage administrator
has provided an installation-written automatic class selection (ACS) routine, the
ACS routine may select a storage class for the data set. Check with your storage
administrator to determine if an ACS routine will select a storage class for the new
data set, in which case you do not need to specify STORCLAS.

No attributes in the storage class can be overridden by JCL parameters.

An ACS routine can override the storage class that you specify on the STORCLAS
parameter.

Relationship to Other Parameters

If the storage administrator has specified GUARANTEED_SPACE=YES in the
storage class, then volume serial numbers you specify on the VOLUME=SER
parameter override the volume serial numbers used by SMS. Otherwise, volume
serial numbers are ignored.

Do not code the following DD parameters with the STORCLAS parameter.

* DYNAM UNIT=AFF
DATA QNAME VOLUME=REF
DDNAME

Examples of the STORCLAS Parameter

Example 1
//SMSDS1 DD DSNAME=MYDS1.PGM,STORCLAS=SCLASO1,DISP=(NEW,KEEP)

In the example, SMS uses the attributes in the storage class named SCLASO01 for
the storage service level of the data set. Note that installation-written ACS routines
may select a management class and data class and can override the specified
storage class.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,STORCLAS=SCLAS02,DISP=(NEW,KEEP),
// VOLUME=SER= (223344 ,224444)

In the example, SMS uses the attributes in the storage class named SCLAS02 for
the storage service level of the data set. Also, if the storage administrator has
specified GUARANTEED_SPACE=YES in the storage class, VOLUME=SER can
be coded and the data set will reside on the specified volumes. (However, if space
is not available on the volumes, the job step fails.) Note that installation-written
ACS routines may select a management class and data class and can override the
specified storage class.

Chapter 12. DD Statement 12-189

DD: SUBSYS

SUBSYS Parameter

Syntax

Parameter Type
Keyword, optional
Purpose

Use the SUBSYS parameter to request a subsystem to process this data set and,
optionally, to specify parameters defined by the subsystem.

Do not use the SUBSYS parameter for an SMS-managed data set (one with an
assigned storage class).

In a loosely-coupled multiprocessing environment, the requested subsystem must
be defined on all processors that could interpret this DD statement.

Considerations for an APPC Scheduling Environment

In an APPC scheduling environment, avoid coding the system symbolic SYSUID on
the SUBSYS parameter. Symbolic substitution is inconsistent when you code
SYSUID as a subparameter of SUBSYS parameter.

References

For more information on the SUBSYS parameter and subsystem-defined
parameters, refer to the documentation for the requested subsystem.

SUBSYS= {subsystem-name
{ (subsystem-name[,subsystem-subparameter]...)}

Single Subparameter: You can omit the parentheses if you code only the subsystem-name.

Number of Subparameters: If needed, you can code up to 254 subsystem-subparameters on a
JES2 system, or up to 1020 bytes of data on a JES3 system.

Multiple Subparameters: When the parameter contains more than the subsystem-name, separate
the subparameters by commas and enclose the subparameter list in parentheses. For example,
SUBSYS=(XYZ,1724,DT25).

Positional Subparameters: If you omit a subparameter that the subsystem considers positional,
code a comma in its place.

Special Characters: When a subparameter contains special characters, enclose the subparameter
in apostrophes. For example, SUBSYS=(XYZ,1724,'KEY=Y").

Code each apostrophe that is part of a subparameter as two consecutive apostrophes. For
example, code O'Day as SUBSYS=(XYX,1724,' NAME=0O"'DAY").

If you code a symbolic parameter on the SUBSYS parameter, you can code the symbolic parameter
in apostrophes.

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. End each statement with a comma after a complete subparameter. For example:

//DS1 DD DSNAME=DATA1,SUBSYS=(XYZ,1724,'KEY=Y',
// DT25, 'NAME=0'DAY"')

Note: The SUBSYS parameter can have a null value only when coded on a DD which either:

¢ Overrides a DD in a procedure
¢ |s added to a procedure.

12-190 0S/390 V2R10.0 MVS JCL Reference

DD: SUBSYS

Subparameter Definition

subsystem-name
Identifies the subsystem. The subsystem name is 1 through 4 alphanumeric or
national ($, #, @) characters; the first character must be alphabetic or national
($, #, @). The subsystem must be available in the installation.

subsystem-subparameter
Specifies information needed by the subsystem. A subparameter consists of
alphanumeric, national ($, #, @), or special characters.

Relationship to Other Parameters
Do not code the following DD parameters with the SUBSYS parameter:

* CHARS DDNAME MODIFY
AMP COPIES DYNAM QNAME
BURST DATA FLASH SYSOUT

The specified subsystem can define other parameters that you must not code with
the SUBSYS parameter:

Ignored but Permitted DD Parameters

If you specify any of the following DD parameters,the system checks them for
syntax and then ignores them:

FCB
UNIT

If you specify the SPACE parameter, the system checks its syntax and then ignores
it, but the subsystem designated on the SUBSYS parameter may use this
information when it allocates the DD.

DISP Parameter

The system checks the DISP status subparameter for syntax, but always indicates
a status of MOD to the subsystem. If the DISP normal or abnormal termination
subparameter is CATLG or UNCATLG, the system allocates the appropriate catalog
to the subsystem.

DUMMY Parameter

If DUMMY is specified with SUBSYS, the subsystem checks the syntax of the
subsystem subparameters. If they are acceptable, the system treats the data set as
a dummy data set.

When This Statement Overrides a Procedure Statement
If SUBSYS appears on a DD statement that overrides a DD statement in a

cataloged or in-stream procedure, the following occurs:

e The system ignores a UNIT parameter, if specified, on the overridden DD
statement.

e The system nullifies a DUMMY parameter, if specified, on the overridden DD
statement.

Chapter 12. DD Statement 12-191

DD: SYSOUT

Examples of the SUBSYS Parameter

Example 1
//DD1 DD DSNAME=ANYDS,DISP=0LD,SUBSYS=ABC

The DD statement asks subsystem ABC to process data set ANYDS.

Example 2
//DD1 DD DSNAME=ANYDS,DISP=0LD,SUBSYS=(XYZ2,
// 'KEYWORD=DATA VALUE1')

The DD statement asks subsystem XYZ2 to process data set ANYDS. The system
passes the subparameter KEYWORD=DATA VALUE1 to the subsystem. The
parameter is enclosed in apostrophes because it contains an equal sign and a
blank, which are special characters.

Example 3
//DD1 DD DSNAME=ANYDS,DISP=0LD,SUBSYS=(XYZ2,IKJ2,
// '"NAME="'MODULE1"', 'DATE=4/11/86")

The DD statement asks subsystem XYZ2 to process the data set ANYDS. The
system passes three subparameters to the subsystem: IKJ2, NAME='MODULE1"'
and DATE=4/11/86. Note that the character string MODULE1 is passed to the
subsystem enclosed in apostrophes.

SYSOUT Parameter

Parameter Type
Keyword, optional

Do not use the SYSOUT parameter for an SMS-managed data set (one with an
assigned storage class).

Purpose
Use the SYSOUT parameter to identify this data set as a system output data set,

usually called a sysout data set. The SYSOUT parameter also:

» Assigns this sysout data set to an output class. The attributes of each output
class are defined during JES initialization; the attributes include the device or
devices for the output class.

e Optionally requests an external writer to process the sysout data set rather than
JES. An external writer is an IBM- or installation-written program.

e Optionally identifies the forms on which the data set is to be printed or
punched.

e Optionally refers to a JES2 /*OUTPUT statement for processing parameters.
The sysout data set is processed according to the following processing options, in
override order:

* The options specified on this sysout DD statement.

e The options specified on a referenced OUTPUT JCL statement.

12-192 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: SYSOUT

e The options specified on a referenced JES2 /*OUTPUT statement or on a JES3
/"FORMAT statement.

* The installation default options for the requested output class.

Note: If a sysout data set has the same class as the JOB statement MSGCLASS
parameter, the job log appears on the same output listing as this sysout
data set.

Output Classes: The installation should maintain a list of available output classes
and their attributes. Some classes should be used for most printing and punching,
but others should be reserved for special processing. Each class is processed by
an output writer. The system operator starts the output writers for the commonly
used output classes. If you plan to specify a special output class, ask the operator
to start the output writer for that class. If the writer is not started before the job
produces the sysout data set, the data set is retained until the writer is started.

References

For information on output writers and external writers, see [0S/390 MVS Using the

|Subsystem Interfacel

SYSOUT= { class }

{ ([class] [,writer-name] [,form-name]) }
[, INTRDR 1 [,code-name]

SYSouUT=(,)

¢ You can omit the parentheses if you code only a class.
¢ All of the subparameters are positional. Code a comma to indicate an omitted subparameter as
follows:

— If you omit the class, code a comma to indicate the omission. For example, when other
subparameters follow, code SYSOUT=(,INTRDR,FM26). When other subparameters do not
follow, code a null class as SYSOUT=(,).

— If you omit a writer-name but code a form-name or code-name, code a comma to indicate
the omission. For example, SYSOUT=(A,,FM26).

— Omission of the third subparameter does not require a comma. For example, SYSOUT=A
or SYSOUT=(A,INTRDR).

Subparameter Definition

class
Identifies the output class for the data set. The class is one character: A
through Z or 0 through 9, which you may optionally include in quotation marks.
The attributes of each output class are defined during JES initialization; specify
the class with the desired attributes.

* Requests the output class in the MSGCLASS parameter on the JOB statement.

In a JES2 system you can also use the dollar-sign ($) to request the output
class in the MSGCLASS parameter on the JOB statement. The $ is provided
only for compatibility with previous releases of JES2. The asterisk (*) value
should be used instead of the $.

Chapter 12. DD Statement 12-193

DD: SYSOUT

(,) Specifies a null class. A null class must be coded to use the CLASS parameter
on a referenced OUTPUT JCL statement.

writer-name
Identifies the member name (1 to 8 alphanumeric characters) of an
installation-written program.

An external writer is a started task used to process output. Because the
external writer is a started task, it has a userid associated with it. Process
output with an external writer by naming the writer on the DD statement that
defines the output:

//MYOUTPUT DD SYSOUT=(A,XTWTR)

In order for the writer to process that output, the writer's userid must be in a
RACF access list. The access list permits the writer's userid to the SYSOUT
data set. The writer's userid is the userid specified in the started procedure
table for the writer task. If your installation's policy requires security labels, the
security label associated with the external writer must be equal to or greater
than the security label associated with the SYSOUT. For more information, see
your security administrator.

Do not code STDWTR as a writer-name. STDWTR is reserved for JES and
used as a parameter in the MVS operator's MODIFY command.

In a JES3 system, do not code NJERDR as a writer-name. NJERDR is
reserved for JESS.

INTRDR
Tells JES that this sysout data set is to be sent to the internal reader as an
input job stream.

form-name
Identifies the print or punch forms. form-name is 1 through 4 alphanumeric or
national ($, #, @) characters.

code-name
Identifies an earlier JES2 /*OUTPUT statement from which JES2 is to obtain
processing characteristics. The code-name must be the same as the code
parameter on the JES2 /*OUTPUT statement.

Note:

e code-name is supported only on JES2 systems.

* Do not specify the code-name subparameter when the job or job step
contains a default OUTPUT JCL statement.

Defaults
In a JES2 system, if you do not specify a class on this DD statement or a
referenced OUTPUT JCL statement, JES2 assigns the sysout data set to output
class A.

If you do not code a writer-name subparameter on this DD statement or a

referenced OUTPUT JCL statement, the installation’s job entry subsystem
processes the sysout data set.

12-194 0S/390 V2R10.0 MVS JCL Reference

DD: SYSOUT

If you do not code a form-name subparameter on this DD statement or a
referenced OUTPUT JCL statement, JES uses an installation default specified at
initialization.

Overrides

The class subparameter of the DD statement SYSOUT parameter overrides an
OUTPUT JCL CLASS parameter. On the DD statement, you must code a null class
in order to use the OUTPUT JCL CLASS parameter; for example:

//0UTDS DD SYSOUT=(,),0UTPUT=*.0UT1

The writer-name subparameter of the DD statement SYSOUT parameter overrides
an OUTPUT JCL WRITER parameter.

The form-name subparameter of the DD statement SYSOUT parameter overrides
an OUTPUT JCL FORMS parameter. Note that the SYSOUT form-name
subparameter can be only four characters maximum while both the OUTPUT JCL
FORMS form-name and the JES initialization default form names can be eight
characters maximum.

Relationship to Other Parameters
Do not code the following DD parameters with the SYSOUT parameter.

* DDNAME LIKE

AMP DISP PROTECT

CHKPT DYNAM QNAME

DATA EXPDT RETPD

DATACLAS LABEL SUBSYS
VOLUME

Ignored Parameters

Because JES allocates sysout data sets, the UNIT and SPACE parameters are
ignored, if coded on a sysout DD statement.

Parameters on Procedure DD Statements that are Overridden

When an overriding DD statement contains a SYSOUT parameter, the system
ignores a UNIT parameter on the overridden DD statement in the cataloged or
in-stream procedure.

Naming a Sysout Data Set

Code the DSNAME parameter with the SYSOUT parameter if you wish to assign
the last qualifier of the system-generated name to a sysout data set.

SYSOUT and DEST Subparameters

Do not code the SYSOUT writer-name subparameter when coding a DEST userid
subparameter. These subparameters are mutually exclusive. You can code:

//VALID1 DD SYSOUT=D,DEST=(node,userid)
//VALID2 DD SYSOUT=(D,writer-name),DEST=(node)

With DCB Subparameters

Chapter 12. DD Statement 12-195

DD: SYSOUT

JES2 ignores DCB=PRTSP=2 on a DD statement that also contains a SYSOUT
parameter.

For JES, it is not necessary to select a specific BLKSIZE on the DCB parameter for
performance reasons because the subsystem selects its own blocking.

INTRDR with OUTPUT Parameter

Do not code an OUTPUT parameter when the writer-name subparameter is
INTRDR.

Relationship to Other Control Statements

A sysout DD statement can directly or indirectly reference an OUTPUT JCL
statement. The parameters on the referenced OUTPUT JCL statement combine
with the parameters on the sysout DD statement to control the processing of the
sysout data set. See [OUTPUT Parameter’ on page 12-144] and |[Chapter 22

[OQUTPUT JCL Statementl

SYSOUT cannot specify a code-name subparameter in a job or job step that
contains an OUTPUT JCL statement; in this case, JES2 treats the third
subparameter as a form-name, instead of a reference to a JES2 /*OUTPUT
statement.

Backward References

Do not refer to an earlier DD statement that contains a SYSOUT parameter.

Starting an External Writer when Requested

When a statement supplying processing options for a sysout data set specifies an
external writer, the writer must be started before it can print or punch the data set.
The writer is started by a system command from the operator or in the input
stream. If the writer is not started before the job produces the sysout data set, the
data set is retained until the writer is started.

Held Classes in a JES2 System

A sysout data set is held if the sysout DD statement contains HOLD=YES or the
OUTPUT JCL statement specifies OUTDISP=HOLD.

Held Classes in a JES3 System

If CLASS specifies a class-name that is defined to JES3 as a held class for the
output service hold queue (Q=HOLD), all of the new output characteristics might
not be included in the data set on the writer queue when (1) the data set is moved
from the hold queue to the output service writer queue (Q=WTR), (2) the data set
includes an OUTPUT JCL statement, and (3) the NQ= or NCL= keyword is used.

For more information, see|0S/390 JES3 Initialization and Tuning Guidel

12-196 0S/390 V2R10.0 MVS JCL Reference

DD: SYSOUT

Significance of Output Classes
To print this sysout data set and the messages from your job on the same output
listing, code one of the following:

e The same output class in the DD SYSOUT parameter as in the JOB
MSGCLASS parameter.

e DD SYSOUT=" to default to the JOB MSGCLASS output class.
e DD SYSOUT=(,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify
the same output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is
referenced or if the referenced OUTPUT JCL statement contains either
CLASS= or CLASS=".

Examples of the SYSOUT Parameter
Example 1

//DD1 DD SYSouT=p

In this example, the DD statement specifies that JES is to write the sysout data set
to the device handling class P output.

Example 2
//DD2 DD DSNAME=8&&PAYOUT1,SYSOUT=P

In this example, DD statement DD2 defines PAYOUT1 as the last qualifier of the
system-generated name for the sysout data set. The system generates a name
such as userid.jobname.jobid.Ddsnumber.PAYOUT1. The DD statement specifies
that JES is to write the data set to the device handling class P output.

Example 3

//J0B50 JOB ,'C. BROWN',MSGCLASS=C
//STEP1 EXEC PGM=SET
//DDX DD Sysout=C

In this example, DD statement DDX specifies that JES is to write the sysout data
set to the device handling class C output. Because the SYSOUT parameter and the
MSGCLASS parameter specify the same class, the messages from this job and the
sysout data set can be written to the same device.

Example 4

//STEP1 EXEC PGM=ANS
//0T1 OUTPUT DEST=NYC
//0T2 OUTPUT DEST=LAX
//0T3 OUTPUT COPIES=5
//DSA DD SYSOUT=H,0UTPUT=(*.0T2,*.0T1,*.0T3)

In this example, the DD statement combines with the three referenced OUTPUT
JCL statements to create three separate sets of output:

1. DSA combines with OT1 to send the sysout data set to NYC.

Chapter 12. DD Statement 12-197

DD: TERM

2. DSA combines with OT2 to send the sysout data set to LAX.
3. DSA combines with OT3 to print five copies of the data set locally on the
printer used for output class H.

Note that the output references can be in any order.

Example 5
//DD5 DD SYSOUT=(F, ,2PRT)

In this example, the DD statement specifies that JES is to write the sysout data set
to the device handling class F output. The data set is to be printed or punched on
forms named 2PRT.

TERM Parameter

Syntax

Parameter Type
Keyword, optional

Do not use the TERM parameter for an SMS-managed data set (one with an
assigned storage class).

Purpose

Use the TERM parameter to indicate to the system that a data set is coming from
or going to a terminal for a TSO/E user.

Considerations for an APPC Scheduling Environment

The TERM parameter has no function in an APPC scheduling environment. If you
code TERM, the system will check it for syntax and ignore it.

TERM=TS

Subparameter Definition

TS In a foreground job submitted by a TSO/E user, indicates that the input or
output data set is coming from or going to a TSO/E userid.

In a background or batch job, the system either:
e Ignores the TERM=TS parameter, when it appears with other parameters.

e Fails the TERM=TS parameter with an allocation error, when the parameter
appears by itself. (The system bypasses this error if SYSOUT=" is coded
with TERM=TS.)

12-198 0S/390 V2R10.0 MVS JCL Reference

DD: UCS

Relationship to Other Parameters
Do not code the following DD parameters with the TERM parameter.

* DYNAM
AMP PROTECT
DATA QNAME
DDNAME

Code only the DCB and SYSOUT parameters with the TERM parameter. The
system ignores any other DD parameters.

Location in the JCL

To ensure that the system uses the desired OUTPUT JCL statement, code all
referenced OUTPUT JCL statements in the input stream before the DD statement
that refers to them. For example, if the referencing DD statement appears in an
in-stream or cataloged procedure, the referenced OUTPUT JCL statement should
precede the DD statement in the procedure.

In a foreground TSO/E job, a DD statement containing TERM=TS and a SYSOUT
parameter begins an in-stream data set.

When concatenating DD statements, the DD statement that contains TERM=TS
must be the last DD statement in a job step.

Examples of the TERM Parameter
Example 1

//DD1 DD TERM=TS

In a foreground job submitted from a TSO/E userid, this DD statement defines a
data set coming from or going to the TSO/E userid.

Example 2
//DD1 DD TERM=TS,SYSOUT=+

In a background or batch job, the system ignores TERM=TS and recognizes a
sysout data set. (An allocation error occurs if SYSOUT=" is not coded with

TERM=TS.)

Example 3

//DD3 DD UNIT=3400-5,DISP=(MOD,PASS),TERM=TS,LABEL=(,NL),
/l DCB=(LRECL=80,BLKSIZE=80)

In a foreground job, the system ignores all of the parameters in this example except
TERM and DCB. In a batch job, the system ignores only the TERM parameter.

UCS Parameter

Parameter Type
Keyword, optional

Purpose

Chapter 12. DD Statement 12-199

DD: UCS

Syntax

Use the UCS (universal character set) parameter to identify:
e The UCS image JES is to use in printing this sysout data set.

e A print train (print chain or print band) JES is to use in printing this sysout data
set on an impact printer.

* A character-arrangement table for this sysout data set printed on 3800 Printing
Subsystem in a JES2 system. In this use, the UCS parameter acts like a
CHARS parameter.

The UCS image specifies the special character set to be used. JES loads the
image into the printer’s buffer. The UCS image is stored in SYS1.IMAGELIB. IBM
provides the special character set codes in Figure 12-2.

References

For more information on the UCS parameter, see|0S/390 DFSMSdfp Advanced
Services.

UCS= {character-set-code }
{(character-set-code [,FOLD] [,VERIFY]) }
L,]

¢ You can omit the parentheses if you code only a character-set-code.

¢ All of the subparameters are positional. If you omit FOLD but code VERIFY, code a comma to
indicate the omission. For example, UCS=(AN,,VERIFY).

¢ Null positions in the UCS parameter are invalid.

Subparameter Definition

character-set-code
Identifies a universal character set. The character-set-code is 1 through 4
alphanumeric or national ($, #, @) characters. See Figure 12-2 for IBM
standard special character set codes.

FOLD
Requests that the chain or train for the universal character set be loaded in fold
mode. Fold mode is described in 2821 Component Description. Fold mode is
most often used when upper- and lower-case data is to be printed only in
uppercase.

Note: JES2 and JES3 do not support the FOLD subparameter. For JES2, the
FOLD option is specified in the UCS image for JES2-controlled printers.
See [0S/390 DFSMSdfp Advanced Services|

VERIFY
Requests that, before the data set is printed, the operator verify visually that
the character set image is for the correct chain or train. The character set
image is displayed on the printer before the data set is printed.

12-200 0S/390 V2R10.0 MVS JCL Reference

Defaults

Overrides

DD: UCS

Figure 12-2. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers

3203
Model
1403 5 3211| Characteristics
AN AN A11 | Arrangement A, standard EBCDIC character set, 48 characters
HN HN H11 | Arrangement H, EBCDIC character set for FORTRAN and COBOL, 48
characters
G11 | ASCII character set
PCAN PCAN Preferred alphanumeric character set, arrangement A
PCHN | PCHN Preferred alphanumeric character set, arrangement H
PN PN P11 PL/I alphanumeric character set
QN QN PL/I preferred alphanumeric character set for scientific applications
QNC QNC PL/1 preferred alphanumeric character set for commercial applications
RN RN Preferred character set for commercial applications of FORTRAN and
COBOL
SN SN Preferred character set for text printing
TN TN T Character set for text printing, 120 characters
XN High-speed alphanumeric character set for 1403, Model 2
YN High-speed preferred alphanumeric character set for 1403, Model N1

Note: Where three values exist (for the 1403, 3211, and 3203 Model 5 printers), code any one of
them. JES selects the set corresponding to the device on which the data set is printed. Not
all of these character sets may be available at your installation. Also, an installation can
design character sets to meet special needs and assign a unique code to them. Follow
installation procedures for using character sets.

If you do not code the UCS parameter, the system checks the UCS image in the
printer’s buffer; if it is a default image, as indicated by its first byte, JES uses it. If it
is not a default image, JES loads the UCS image that is the installation default
specified at JES initialization.

On an impact printer, if the chain or train does not contain a valid character set,
JES asks the operator to specify a character set and to mount the corresponding
chain or train.

For printing on a printer with the UCS feature, the UCS parameter on a sysout DD
statement overrides an OUTPUT JCL UCS parameter. For printing on a 3800, a
CHARS parameter on the sysout DD statement or the OUTPUT JCL statement
overrides all UCS parameters.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the
following parameters, in override order, to select the font list:

1. Font list in the library member specified by an OUTPUT JCL PAGEDEF
parameter.

. DD CHARS parameter.

. OUTPUT JCL CHARS parameter.

DD UCS parameter.

. OUTPUT JCL UCS parameter.

. JES installation default for the device.

. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

No oA WN

Chapter 12. DD Statement 12-201

DD: UNIT

See FPAGEDEF Parameter” on page 22-65 for more information.

Relationship to Other Parameters
Do not code the following DD parameters with the UCS parameter.

* DYNAM
AMP KEYOFF
DATA PROTECT
DDNAME QNAME

Do not code the UCS parameter with the DCB subparameters CYLOFL, INTVL,
RESERVE, and RKP.

The FOLD and VERIFY subparameters are meaningful only when you specify a
printing device directly on a DD statement, for example, UNIT=00E, thus bypassing
JES sysout processing.

Using Special Character Sets
To use a special character set, SYS1.IMAGELIB must contain an image of the
character set, and the chain or train for the character set must be available. IBM
provides standard special character sets, and the installation may provide
user-designed special character sets.

Examples of the UCS Parameter
Example 1

//DD1 DD UNIT=1403,UCS=(YN,,VERIFY)

In this example, the DD statement requests a 1403 Printer. The UCS parameter
requests the chain or train for special character set code YN. Because VERIFY is
coded, the system will display the character set image on the printer before the
data set is printed.

Example 2
//DD2 DD SYSOUT=G,UCS=PN

In this example, the DD statement requests the device for output class G. If the
device is a printer with the UCS feature, the system loads the UCS image for code
PN. If the device is an impact printer, the system asks the operator to mount the
chain or train for PN, if it is not already mounted. If the device is a 3800, the
system uses the UCS subparameter to select the character-arrangement table.
Otherwise, the system ignores the UCS parameter.

UNIT Parameter

Parameter Type

Keyword, optional

Note: With SMS, you do not need to use the UNIT parameter to specify a device
for an SMS-managed data set. Use the STORCLAS parameter (described
on page [12-188) or let an installation-written automatic class selection
(ACS) routine select a storage class for the data set.

12-202 0S/390 V2R10.0 MVS JCL Reference

Syntax

DD: UNIT

Also with SMS, for a non-SMS-managed data set, if your storage administrator has
set a system default unit under SMS, you do not need to specify UNIT. Check with
your storage administrator.

Purpose

Use the UNIT parameter to ask the system to place the data set on:

¢ A specific device.
e A certain type or group of devices.
* The same device as another data set.

The UNIT parameter can also tell the system how many devices to assign and
request that the system defer mounting the volume until the data set is opened.

{UNIT=([ddd] [,unit-count] [,DEFER]) }
[/ddd 11L°P
[/dddd 110 1

[device-type

[group-name

{UNIT=AFF=ddname }

¢ You can omit the parentheses if you code only the first subparameter.

¢ All of the subparameters are positional. If you omit unit-count or P but code DEFER, code a
comma to indicate the omission; one device is assigned to the data set. For example,
UNIT=(3490,,DEFER).

Subparameter Definition

device-number
Identifies a specific device by a 3-digit or 4-digit hexadecimal number. Precede
a 4-digit number with a slash (/). A 3-digit number can be specified with or
without a slash.

Attention: Specify a device number only when necessary. When you specify a
device number, the system can assign only that specific device. If the device is
already being used, the job must be delayed or canceled.

However, for a permanently mounted direct access device, such as a 3390
Direct Access Storage, specifying a device type (UNIT=3390) and a volume
serial number in the VOLUME=SER parameter has the same result as
specifying a device number in the UNIT parameter.

In a JES3 system, if any DD UNIT parameter in a job specifies a
device-number for a device that is JES3-managed or jointly JES3/MVS
managed, the JES3 //*MAIN statement must contain a SYSTEM parameter.

SMS ignores a device number, if specified for SMS-managed DASD.

device-type
Requests a device by its generic name, which is an IBM-supplied name that
identifies a device by its machine type and model. For example, UNIT=3390.

When a device-type name contains a hyphen, do not enclose it in apostrophes,
for example, UNIT=3400-5.

Obtain the list of device types you can specify from your installation.

Chapter 12. DD Statement 12-203

DD: UNIT

If you specify the device-type subparameter, SMS ignores it.

For a 3480 Magnetic Tape Subsystem in compatibility mode, code
UNIT=3400-9 or a group-name.

group-name
Requests a group of devices by a symbolic name. The installation must have
assigned the name to the device(s) during system initialization or IBM must
have assigned the name. The group-name is 1 through 8 alphanumeric
characters.

If you specify the group-name subparameter, SMS ignores it.

Group Names: A group-name can identify a single device or a group of
devices. A group can consist of devices of the same or different types. For
example, a group can contain both direct access and tape devices.

Note: A group name is called an esoteric name in Hardware Configuration
Definition (HCD) terminology.

Allocation from Groups: The system assigns a device from the group. If a
group consists of only one device, the system assigns that device. If the group
consists of more than one device type, the units requested are allocated from
the same device type. For example, if GPDA contains 3380 Disk Storage and
3390 Direct Access Storage devices, a request for two units would be allocated
to two 3380s or to two 3390s.

Extending Data Set: If a data set that was created using the group-name
subparameter is to be extended, the system allocates additional devices of the
same type as the original devices. However, the additional devices may not
necessarily be from the same group.

SYSALLDA: IBM assigned group-names include SYSALLDA, which contains all
direct access devices defined to the system.

SYS3480R and SYS348XR: SYS3480R and SYS348XR are IBM-assigned
group names. SYS3480R contains 3480, 3480X, and 3490 Magnetic Tape
Subsystems. SYS348XR contains 3480X and 3490 Magnetic Tape
Subsystems.

Use these group names to override the device type eligibility retrieved by the
system when referencing existing 3480- or 3480 XF-formatted data sets.
Specifically, use SYS3480R when you want to read 3480-formatted data sets
and use SYS348XR when you want to read 3480 XF-formatted data sets.

Note: LABEL=(,,IN) is the system-managed tape library equivalent of either
UNIT=SYS3480R or UNIT=SYS348XR.

See [‘Restrictions on UNIT=AFF” on page 12-206|and|‘UNIT=AFF and Other|
